The Inflammasome: Critical Roles in Intestinal Homeostasis

Hasan Zaki, PhD
Department of Pathology
UT Southwestern Medical Center
Intestinal Homeostasis vs Inflammation

Cytokines, Chemokines, Inflammatory mediators

Healthy intestine

Inflammatory bowel disease

Homeostasis

Inflammation
Pathogen recognition receptors and inflammatory signaling pathways

- Toll-like receptors (TLRs) senses pathogen associated molecular patterns at cells surface and endosomal compartment.
- Nod-like receptors (NLRs) are cytosolic sensors for pathogen and danger associated molecular patterns.
Major inflammasome pathways

Pro IL-1β
Pro IL-18

NLRP1b inflammasome

NLRP3 inflammasome

NLRC4 inflammasome

AIM2 inflammasome

DAMPs:
- MSU, PPD,
- Silica, alum,
- Asbestos, amyloid-β

PAMPs:
- LPS, peptidoglycan,
- Viral and bacterial
- RNA, DNA

Flagellin

dsDNA

Cytosolic dsDNA

Active caspase-1

Pro IL-1β
Pro IL-18
The NLRp3 inflammasome protects mice from dextran sodium sulfate (DSS)-induced colitis

Zaki MH, Immunity, 2010
Multiple inflammasome pathways maintain intestinal homeostasis

Figure:
- **Diagram**: Shows the interaction between NLRP3, ASC, and Caspase-1 leading to pro IL-1β & IL-18, resulting in IL-1β, IL-18.
- **Graph 1**: Shows body weight (%) over days after DSS with lines for WT, Nlrp3-/-, and Casp1-/-.
- **Graph 2**: Displays IL-18 (pg/mg) in colon with data points for WT, Nlrp3-/-, and Casp1-/-, indicating statistical significance with asterisks.
Absent in Melanoma 2 (AIM2)

- AIM2 is a member of interferon inducible gene HIN-200 family.
- AIM2 contains an N-terminal Pyrin domain and a C-terminal HIN-200 oligonucleotide binding domain.
- AIM2 is a cytosolic sensor for dsDNA.
- Interaction of AIM2 with DNA leads to the inflammasome activation.
- Several bacteria and virus including *Listeria monocytogenes*, *Francisella Tulerensis*, *Streptococcus pneumoniae*, *Staphylococcus aureus*, murine cytomegalovirus and vaccinia virus can activate AIM2 inflammasome.
Aim2-deficient mice are susceptible to DSS-induced colitis

Body weight change (%)

Diarrhea score

Bleeding score

Colon length (cm)
Colitis susceptibility of AIM2-deficient mice is associated with increased inflammation
AIM2 is involved in the activation of the inflammasome
How does AIM2 protect mice from colitis?

Cytokines and Chemokines

Bacterial count (Log10 cfu/g of tissue)

- **Colon tissue:**
 - WT: 4
 - Aim2⁻/⁻: 8
- **Stool:**
 - WT: 4
 - Aim2⁻/⁻: 8

Inflammation
Gut microbiota plays an essential role in Aim2-dependent colitis susceptibility

WT and Aim2^{-/-} mice were treated with antibiotics (ampicillin, neomycin, metronidazole, vancomycin) for 3 weeks before colitis induction.
AIM2 regulates the growth of *E. coli*
Microbiota in *Aim2*−/− mice are colitogenic

Littermate study

Body weight change (%) vs. Days after DSS administration.
E. coli is responsible for higher colitis pathogenesis in Aim2^{−/−} mice

Germ-free (GF) mice were co-housed with either conventionally raised wild-type or Aim2^{−/−} mice.
How does AIM2 control the growth of *E. coli*?
AIM2 regulates production of anti-microbial peptides

β-defensin

Reg3b

Reg3g

Lipocalin 2

S100A8

S100A9
The inflammasome downstream cytokines induces expression of anti-microbial peptides in intestinal epithelial cells

Primary intestinal epithelial cells were treated with either IL-1β (10 ng/ml) or IL-18 (10 ng/ml).
IL-18 treatment reduces colonic burden of *E. coli* and rescue *Aim2*−/− mice from DSS-induced colitis.
Conclusion

E. coli

Microbiota

Antimicrobial host defense

IL-1R

Pro-IL-1β, Pro-IL-18

Antimicrobial peptides

Cytokines, Chemokines

Lcn2, Reg3β, Reg3γ, S100A8, S100A9

dsDNA

AIM2 Inflammasome

Pro-IL-1β, Pro-IL-18

IL-1β IL-18

Proliferation

Inflammation
Acknowledgement

Lab Members

• Shuiqing Hu, Postdoctoral Fellow
• Nashir Udden, Postdoctoral Fellow
• Youn-tae kwak, Research Associate

Collaborators

• Dr. Lan Peng, Pathology, UTSW
• Dr. James Malter, Pathology, UTSW
• Dr. Lora Hooper, Immunology, UTSW
• Dr. Chadrashkehar Pasare, Immunology, UTSW

Supports

• UT Southwestern start up fund
• Crohn’s and Colitis Foundation of America Career Development Award
• American Cancer Society new investigator award