Contemporary Prenatal Diagnosis – The Clinician’s Perspective

Allan J Fisher, MD, FACOG, FACMG
Director, Perinatal Genetics
Elliot Hospital System
Manchester NH
Noninvasive Prenatal Testing (Screening)

- Introduced commercially October 2011
- High sensitivity and specificity in the high risk population
- Two types
 - Massive Parallel Shotgun Sequencing
 - Targeted Fetal DNA Sequencing
Criteria

- Currently: High risk population
 - 35 and above
 - Ultrasound findings
 - Increased risk via other screening
 - Family history

- Prevalence = 1/8 vs. 1/600 (low risk population)
- PPV 90% vs. 11%
Which is Best?

- Tough question
- MPSS (Sequenom, Vernata)
- Targeted Fetal DNA Sequencing
 - Ariosa DANSR/FORTE: hybridize, amplify, sequence
 - Natera: Massive multiplex isolation with SNP analysis
Sensitivities & Specificities

• All have high sensitivities
 – >99% DS and T18
 – More variable for T13
 – Less data for sex chromosomal abnormalities

• All have low false positive rates
False Negatives

- Gestational age (<10 wks)
- Fetal fraction
 - Maternal Weight
- Genetic Variants
- Failure to extract adequate material
- Individual variation in cfDNA amount
- GC rich regions
False Positives

- Contamination
- Vanishing twin
- Placental mosaicism (more in T13, 18, 21)
- Low level mosaicism (esp. sex chromo)
 - Maternal mosaicism (loss of X in older women)
- Maternal Cancers
 (only a few cases, no specific pattern)
Failure Rates

<table>
<thead>
<tr>
<th>Trial</th>
<th>Failure Rate</th>
<th>DS Detection</th>
<th>FP rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chiu et al. 2011</td>
<td>11/764 (1.4%)</td>
<td>86/86</td>
<td>3/146</td>
</tr>
<tr>
<td>Ehrich et al. (2011)</td>
<td>18/467 (3.8%)</td>
<td>39/39</td>
<td>1/410</td>
</tr>
<tr>
<td>Palomaki et al. (2011)</td>
<td>13/1696 (0.8%)</td>
<td>209/212</td>
<td>3/1471</td>
</tr>
<tr>
<td>Bianchi et al. (2012)</td>
<td>148/532 (3.0%)</td>
<td>89/89</td>
<td>0/404</td>
</tr>
<tr>
<td>Norton et al. (2012)</td>
<td>148/3228 (4.6%)</td>
<td>81/81</td>
<td>1/2888</td>
</tr>
<tr>
<td>Zimmerman et al. (2012)</td>
<td>21/166 (12.6%)</td>
<td>11/11</td>
<td>0/145</td>
</tr>
<tr>
<td>ALL</td>
<td>424/6687 (3.2%)</td>
<td>424/427 (99.3%)</td>
<td>8/5319 (0.15%)</td>
</tr>
</tbody>
</table>

Note: Not all study designs the same, different techniques, variety of FP rates, thresholds to call DS risk have different methodologies
Remember

- There is no free lunch
 - Nothing in biology is 100%
 - Are we going backwards in PNDx?
 - Does not detect many things... yet
ACOG, ACMG, ISPD, NSGC: Common Themes

- Great sensitivities and specificities for T21 & T18
- Not diagnostic
- Needs Genetic Counseling (pre- and post)
- Should only be used in validated groups
- More studies needed for the general population
Shifting Paradigms

Does NIPT replace other screening tests available today?

- Better sensitivity but... look what we are missing....
- First & second trimester ultrasound benefits
 - Increased NT, early defects, cardiac esp.
 - Other anomalies seen in embryological progression (cranial, skeletal, cardiac)

- Serum screening benefits
 - Unexplained increased MSAFP
 - Low uE3 (SLO, X linked ichthyosis, sulfatase deficiency, congenital adrenal hypoplasia, Zellweger, Antley Bixler, POMC deficiency, other cholesterol metabolism, IUGR, SAB)
 - Low PAPP-A
 - Combination of abnormal biochemical markers
Future

- Twin and population data
- Aneuploidy in all chromosomes
- Targeted microdeletion and microduplication syndromes
- “Low density” microarray (>10mB)
- Single gene defects (CF, β-thal, many others)
- Whole genome sequencing (ultimate goal)
Chromosomal Microarray (CMA)

- Introduced in the prenatal arena circa 2005
- Results and counseling still from postnatal databases
- Unknowns (VOUS)
- Comparative array hybridization vs. SNP oligo-array
CMA has changed Prenatal Diagnosis

- Increased detection of chromosomal variation
- Ability to detect absence of heterozygosity (SNP Oligo-array)
 - Consanguinity
 - UPD (heterodisomy is harder to detect)
 - Inherited disorders (AR, AD, X-linked)
 - Triploidy
- Both miss true balanced translocations (0.08-0.09%) and other balanced rearrangements
Experience with microarray-based comparative genomic hybridization for prenatal diagnosis in over 5000 pregnancies

Lisa G. Shaffer1 *, Mindy P. Dabell1, Allan J. Fisher2, Justine Coppinger1, Anne M. Bandholz1, Jay W. Ellison1, J. Britt Ravn1, Beth S. Torchia1, Blake C. Ballif1 and Jill A. Rosenfeld1

1Signature Genomic Laboratories, PerkinElmer, Inc., Spokane, WA, USA
2Commonwealth Perinatal Services, Richmond, VA, USA
*Correspondence to: Lisa G. Shaffer. E-mail: lisa.shaffer@perkinelmer.com
Increases Detection

- Shaffer et al. Prenatal Diagnosis 2012
- 2004-2011
- N = 5003 prenatal cases, various reasons
- All known aneuploidy excluded from karyotype
- No fetal demises
- Detection of an additional 5.3% abnormals (6.5% & 8.2% for abnormal US and demise, respectively)
- 0.39% de novo copy number variations noted

- 71% found below the resolution of karyotype (<10Mb). Thus 29% should have been detected via karyotype!
Specific Ultrasound Anomalies

Detection rates of clinically significant genomic alterations by microarray analysis for specific anomalies detected by ultrasound

n=2858 cases

- Clinically significant genomic alterations were identified in cases with a single ultrasound anomaly (n=99/1773, 5.6%)

- Anomalies in two or more organ systems (n=77/808, 9.5%), isolated growth abnormalities (n=2/76, 2.6%), and soft markers (n=2/77, 2.6%).

- High detection rates: holoprosencephaly (n=9/85, 10.6%), posterior fossa defects (n=21/144, 14.6%), skeletal anomalies (n=15/140, 10.7%), ventricular septal defect (n=14/132, 10.6%), hypoplastic left heart (n=11/68, 16.2%), and cleft lip/palate (n=14/136, 10.3%)

Shaffer et al, Prenatal Diagnosis 2012, 32: 986–995 (free)
“GENERAL” POPULATION?

• Issues:
 – Wapner et al. (NEJM 2012) showed 1.7% (1:60) of patients with abnormal CMA (aCGH) for AMA alone (no ultrasound findings) or abnormal serum screening
 – Positive Predictive Values decreases significantly
 – “Unknowns” – more so with Whole Genome/Exome Sequencing
The Unknowns – this is truly not unique to us

Copy number loss and gain

– Parentally inherited?
– Incompletely penetrant/variable phenotype?
– What genes are involved? Significance of these genes? Inherited disorders (AR, AD) involved? Does it agree with the phenotype?
– How large? Does this make a difference?
– What about future findings at this site? Are we obligated to follow up in the future? Who will take this responsibility?
How Do We Navigate Now?

- Talk with the patient: “nothing”, “everything” or “don’t know”
- Are patients truly informed?
- Find out the patient’s perception of risk and their comfort level
- The information (and decision) can be overwhelming for patients
- Time constraints for patient education (not everyone is at the same level)
- When to educate? Prenatal is ideal.
Paradox vs. Paradigm

- Noninvasive vs. Diagnostic (none vs. slight risk)
- Less vs. detailed information
- Missing clinically significant disorders vs. VOUS
- Explaining FP and FN with all tests
- Pleotropic phenotypes with all genetic disorders (or findings)
- Education for professionals and lay public
Thank you.

Questions?