PBE E X P E R T

Dr. Aziz Chraibi , eng. HEALTH CANADA EXPERT PBE, Pharma Bio Expert Inc. President

cGMP Compliance Design Requirements

3rd International Summit on

GMP, GCP & Quality Control

September 25-26, 2014 Valencia, Spain

Of Sterile/Aseptic Manufacturing Facilities

GMP, GCP & Quality Control September 25-26, 2014 Valencia, Spain

cGMP compliance design of Sterile/Aseptic Manufacturing Facilities is a mandatory to meet qualification and validation requirements

HEALTH CANADA E XPERT

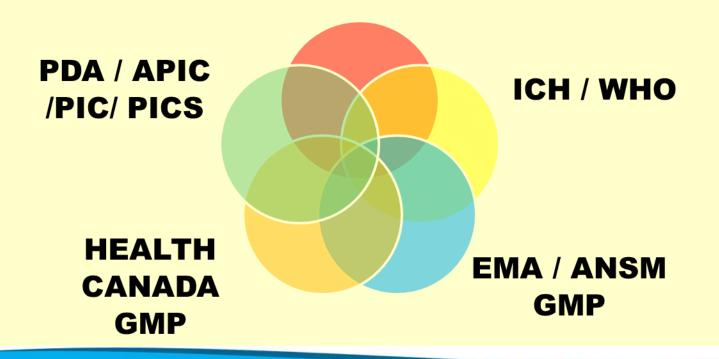
September 25-26, 2014 Valencia, Spain

MP, GCP & Quality Control

SUMMARY

- 1. CGMP regulation requirements
- 2. Reminder of URS / Clean Rooms
- 3. Design of clean rooms
- 4. Types of contaminants
- 5. Gowning & means of prevention
- 6. Classifications of rooms vs standards & applications
- 7. Types of segregation, of flow, of cascades
- 8. Building construction and architectural finishes
- 9. Design of HVAC systems for sterile products
- 10. Design in the presence of High Potent products
- 11. PPE, Personal Protective equipment
- 12. Elements of Commissioning/Validation of Premises & HVAC
- 13. Many case studies will be presented

pbe@pharmabioeng.com • www.pharmabioeng.com CANADA: 1.514.616.2692 • TUNISIE: 216.96.751.330 • MAROC: 212.622.629.224 • ALGÉRIE: 213.561.234.333



September 25-26, 2014 Valencia, Spain

Regulatory references?

cGMP / **FDA**

pbe@pharmabioeng.com • www.pharmabioeng.com CANADA: 1.514.616.2692 • TUNISIE: 216.96.751.330 • MAROC: 212.622.629.224 • ALGÉRIE: 213.561.234.333

September 25-26, 2014 Valencia, Spain

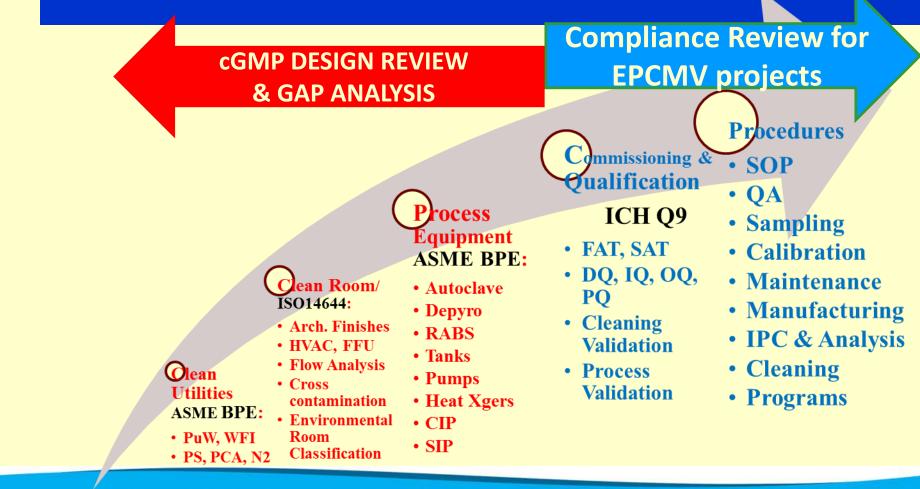
SPECIFIC REFERENCES (Aseptic)

International Guideline Documents for Life Sciences				
Publisher	Description	Reference Document		
ISPE	International Society Pharmaceutical Engineering	HVAC Guidelines		
WHO	WHO Expert Committee for Pharmaceutical Preparations	TRS-961		
ASHP	Pharmaceutical Compounding-Sterile Preparations	USP-797)		
US DOH	USA Department of Health	CGMP		
Eurovent		4 10		
IEST	Institute Environmental Sciences	IEST-RP-CC001, 007, 021, 034		
ASHRAE	American Society Heating, Refrigeration A/C Engineers	Standard 52.2 - filter testing, Guideline 26 In-Situ testing, Standard 180 HVAC Equipment Maintenance , Standard 170 Hospitals		
ISO	International Standards Organization	Published: 14644, 29463 HEPA and ULPA Filtration. Coming standards underway: 16890 Filter Testing, Filtration 12249 Life Cycle Assessment , 29462 In Situ Testing		
Peaks	Pharmaceutical Inspection Convention	GMP Guide		
1822	European Norm for Classification & Testing of HEPA/ULPA Filters	IN-1822 Shares 1-5		
IN779	European Norm for Pre filtration testing	IN-779 2012		

3rd International Summit on MP. GCP & Quality Control September 25-26, 2014 Valencia, Spain

Clean rooms: regulations

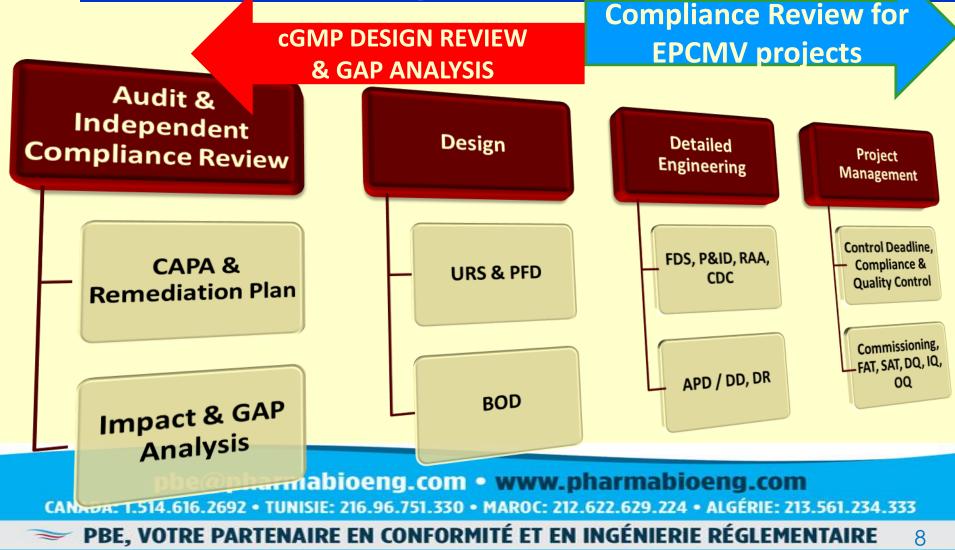
- ✓ **GMP (Good** Manufacturing Practice) ed. 2002, Combined with the european standard
- ✓ **ISO 14644** (Clean rooms and controlled environments)
- ✓ **ISO 14698** « Bio-contamination controls, methods of measurement, principles of estimation and evaluation of data (interpretation) and methods of cleaning and disinfecting of the surfaces "
- ✓ ISO 13408 "Aseptic processing of health care products"
- ✓ **ASHAE** 1999 (Application) Clean Space chap. 15
- ✓ **ISPE** , vol 3, chap. 4 to 9 & 11
- ✓ ISPE, vol 6, chap. 6 & 13
- ✓ IEST (Considerations in clean room) RP cc0012.1

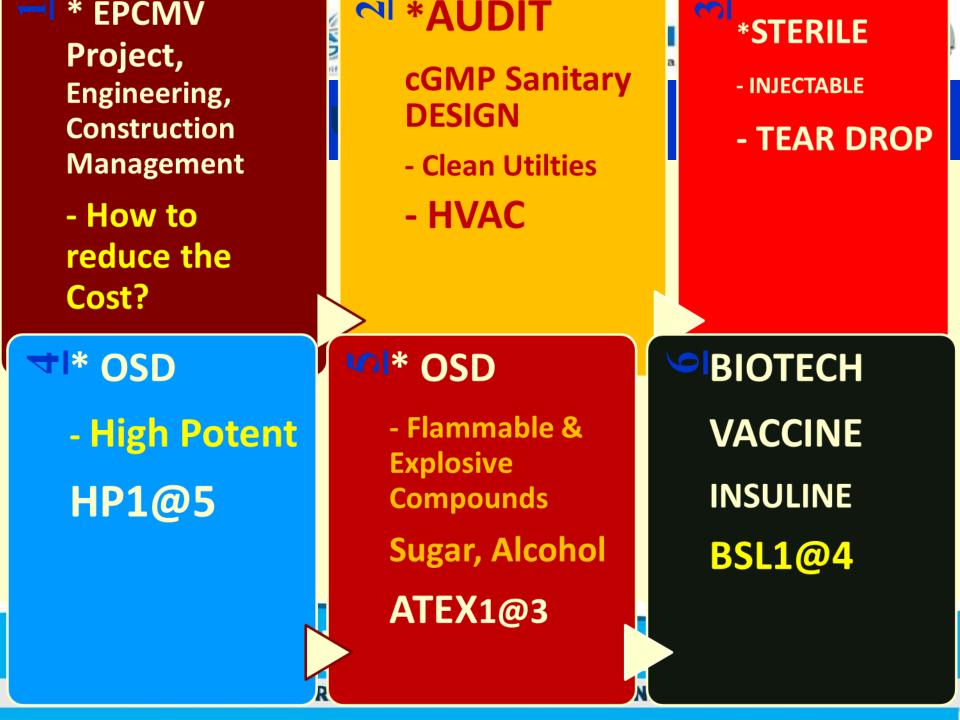


GMP, GCP & Quality Control September 25-26, 2014 Valencia, Spain

7

GAP ANALYSIS, Audit & cGMP Requirements Inspection Process


GMP, GCP & Quality Control


September 25-26, 2014 Valencia, Spain

PBE, your c-GMP Regulation & Engineering Compliance Partner

PharmaBio

September 25-26, 2014 Valencia, Spain

GMP, GCP & Quality Control

SKILLED & MULTIDISCIPLINARY HQP REQUIRED

Audit & Compliance, QA, Validation, Reg. Aff.

Sanitary Process Eqpmt

Clean Utilities ASME-BPE 2012

Bio &Pharma
Systems

Clean Rooms

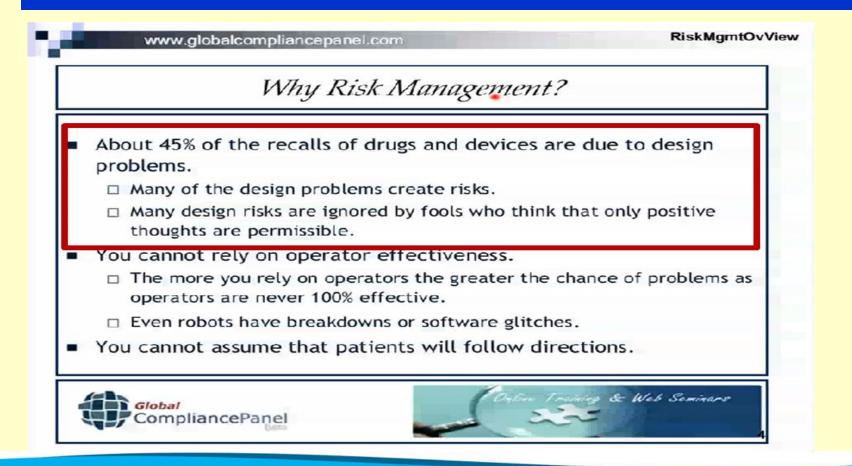
Layout ISO14644-4

Metringe

September 25-26, 2014 Valencia, Spain

GMP, GCP & Quality Control

WHY STERILE FACILITIES HAVE TO MEET cGMP REQUIREMENT?



GMP, GCP & Quality Control September 25-26, 2014 Valencia, Spain

WHY STERILE FACILITIES HAVE TO MEET cGMP REQUIREMENT?

GMP, GCP & Quality Control September 25-26, 2014 Valencia, Spain

HEALTH CANADA NON-COMPLIANCE INSPECTION

2.2.3 : Éléments du Règlement les plus souvent mentionnés

PharmaBio

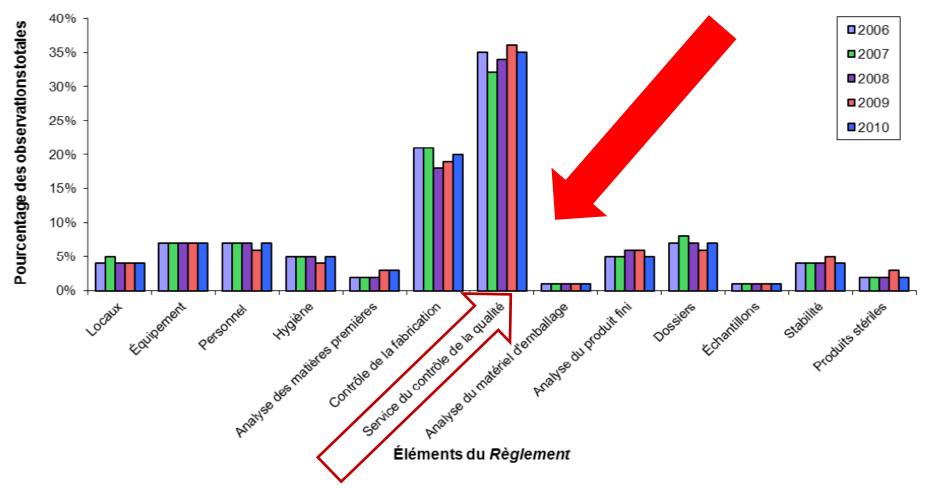
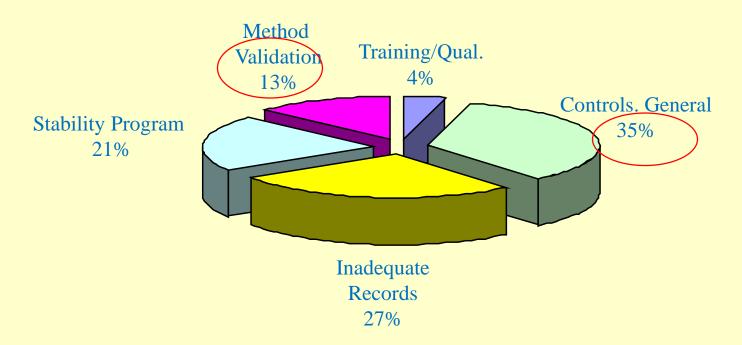


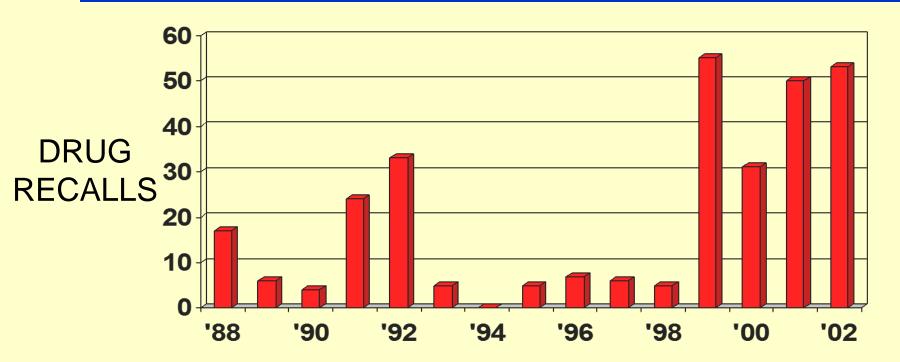
Figure 2.2.3 Éléments du *Règlement* les plus souvent mentionnés par exercice (de 2006 à 2010). Le service du contrôle de la qualité (C.02.015) est toujours l'élément qui est visé par le plus grand nombre d'observations.



GMP, GCP & Quality Control September 25-26, 2014 Valencia, Spain

FDA Systems Based Inspection: Laboratory System

Feb – July 2002: 212 Inspections (US)


* Reference: Albinus D' Sa, FDA, CDER Office of Compliance, from AAPS, Nov. 2002 presentation.

Lack of Sterility Assurance = FDA Drug Recalls

Nearly all drugs recalled due to Lack of Sterility Assurance in last 20 years were produced via ASEPTIC PROCESSING / FDA

Dr. Aziz Chraibi , eng. HEALTH CANADA EXPERT PBE, Pharma Bio Expert Inc. President

September 25-26, 2014 Valencia, Spain

MP, GCP & Quality Control

cGMP

CC

17

Basic GMP Requirements -URS

 Manufacturing processes are clearly defined and controlled to ensure consistency and compliance with approved specifications;
 Critical steps of manufacturing processes and significant changes to the process are validated;

pbe@pharmabioeng.com • www.phar_nabioeng.cxm

CANADA: 1.514.616.2692 • TUNISIE: 216.96.751.330 • MAROC: 212.622.629.224 • ALGÉRIE: 215.561.234.333

September 25-26, 2014 Valencia, Spain

MP, GCP & Quality Control

cGMP

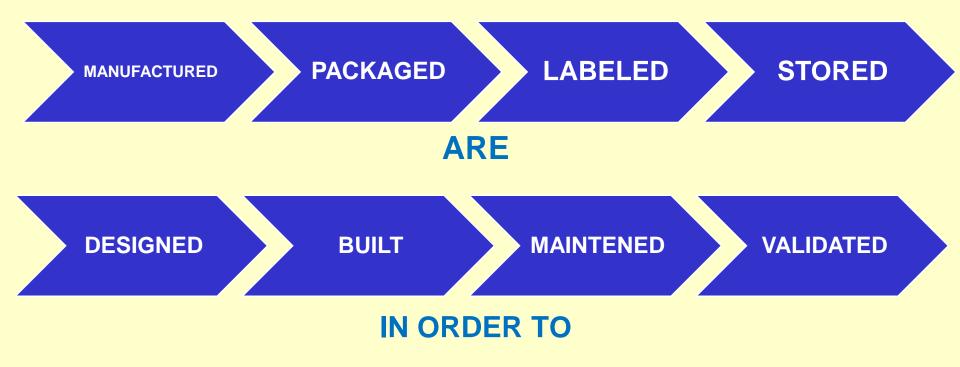
CQ

Basic GMP Requirements / URS

- 3. Critical GMP requirements :
- -Qualified and trained personnel,
- -Adequate premises and space,
- -Suitable equipment and services,
- -Correct materials, containers and labeis,
- -Approved procedures and instructions,
- -Suitable storage and transport.

Health Canada / Health Products and Food Branch Inspectorate Good Manufacturing Practices Guidelines (GMP) 2009 Edition / November 8, 2009 Page 9

pbe@pharmabioeng.com • www.pharmabioeng.com CANADA: 1.514.616.2692 • TUNISIE: 216.96.751.330 • MAROC: 212.622.629.224 • ALGÉRIE: 213.561.234.333


September 25-26, 2014 Valencia, Spain

GMP, GCP & Quality Control

19

cGMP CR GUIDELINES

The rooms where a lot or batch of a drug is:

pbe@pharmabioeng.com • www.pharmabioeng.com

CANADA: 1.514.616.2692 • TUNISIE: 216.96.751.330 • MAROC: 212.622.629.224 • ALGÉRIE: 213.561.234.333

September 25-26, 2014 Valencia, Spain

GMP, GCP & Quality Control

cGMP CR GUIDELINES

a) to allow the execution of the manufacturing operations in a manner:

bioeng.com 224 • Algérie: 213.561.234.333 Erie réglementaire 20

pbe@pharma CANADA: 1.514.616.2692 • TUNISI PBE, VOTRE PARTENAII

September 25-26, 2014 Valencia, Spain

cGMP CR GUIDELINES

3. Prevent cross-contamination (CC)

- 3.1 TO SEAL ? to enable CLEANING & reduce CC risks
- 3.3 Joints between walls, ceilings and floors are **SEALED**.

ATTENTION TO THE SUSPENDED CEILINGS!

September 25-26, 2014 Valencia, Spain

GMP, GCP & Quality Control

<u>cGMP CR GUIDELINES</u>

3.1 TO AVOID ?

→ Surface material which can release particles.

→ To allow Cleaning

& Disinfection

VHP ® Biodecontamination Systems Attention to materials incompatibilities & **Corrosion issues by using VHP**

pbe@pharmabioeng.com • www.pharmabioeng.com CANADA: 1.514.616.2692 • TUNISIE: 216.96.751.330 • MAROC: 212.622.629.224 • ALGÉRIE: 213.561.234.333

September 25-26, 2014 Valencia, Spain

GMP, GCP & Quality Control

cGMP CR GUIDELINES

$3.1 \rightarrow$ To allow cleaning

 $3.2 \rightarrow$ **Surfaces** are hard, smooth and free of sharp corners where extraneous material can collect.. **REDUCE**:

→ SOFT WALL: Non Acceptable

September 25-26, 2014 Valencia, Spain

GMP, GCP & Quality Control

Are the drains required in CR ?

 $3.5 \rightarrow$ Floor & Equipment Drains Requirements

Meet :

- Insurers Requirement (Drainage Water Fire Protection)
- Process Requirement / containment HP (Disbursed)
- Civil & building Codes
- Safety requirement & HSE standards

September 25-26, 2014 Valencia, Spain

GMP. GCP & Quality Control

Drains of sol vs Classification

- **3.5** → Floor & Equipment Drains Requirements
- Fitted with siphons.
 - ► In rooms classified B/A: NON ACCEPTABLE
 - In rooms classified C: are closed with disinfectants and automatic priming pumps
 - In rooms classified D: may be acceptable + procedure

September 25-26, 2014 Valencia, Spain

GMP, GCP & Quality Control

How to maintain the air quality in CR

LEV : Local Exhaust Ventilation

September 25-26, 2014 Valencia, Spain

How to maintain the air quality in CR

- Control of the contaminants :
- 1- by monitoring the pressure cascade between the adjacent production areas,

2- ▶ by checking and replacing periodically the air filters

(HEPA: Integrity Test).

GMP, GCP & Quality Control

September 25-26, 2014 Valencia, Spain

How to maintain the air quality in CR

- \rightarrow by suitable **HVAC** designed taking into account:
- Uni Directional Air Flow : UDAF or NUDAF

HEPA Filters (Terminal or Central, Integrity Test)

Air veocity (r ACR,)/olumetric Flow)

Related VNV CR / Air Classification (ISO14644 / cGMP)

Appropriate Gowning & Flows Personal, Material & Prducts)

Physical & Mechanical Segregations & Barriers

September 25-26, 2014 Valencia, Spain

NON GMP ISSUES

1- MIX-UPS

2- Failure of Product Quality & Integrity

3- Breakage of GMP & Sanitary Design Consistency

pbe@pharmabioeng.com • www.pharmabioeng.com CANADA: 1.514.616.2692 • TUNISIE: 216.96.751.330 • MAROC: 212.622.629.224 • ALGÉRIE: 213.561.234.333

September 25-26, 2014 Valencia, Spain

GMP, GCP & Quality Control

URS - Specifications / Containment / ASEPTIC / ATEX / BSL

pbe@pharmabioeng.com • www.pharmabioeng.com CANADA: 1.514.616.2692 • TUNISIE: 216.96.751.330 • MAROC: 212.622.629.224 • ALGÉRIE: 213.561.234.333

September 25-26, 2014 Valencia, Spain

GMP, GCP & Quality Control

Definition - RABS

RABS : Restricted **Access Barrier System**

September 25-26, 2014 Valencia, Spain

MP, GCP & Quality Control

Definition - RABS

- **RABS** provides an **enclosed environment**
- It reduce the risk of contamination to product, containers, closures, and product contact surfaces
- compared to the risks associated with conventional our regular operations.

ISPE definition, August 2005

Dr. Aziz Chraibi , eng. HEALTH CANADA EXPERT PBE, Pharma Bio Expert Inc. President

Types of Contaminants & Cleanliness **Technologies**

Sources of contaminants

- 1.4.11 Materials and products should be protected from contamination and <u>cross-contamination</u> during all stages of manufacture
- ✓ Note: **contaminants** may result from:
 - Inappropriate PREMISES (e.g. Poor design, layout or finishing),
 - 2. Poor CLEANING procedures & Equipment,
 - 3. Contaminants brought in by PERSONNEL,
 - 4. Poor HVAC system

GMP, GCP & Quality Control September 25-26, 2014 Valencia, Spain

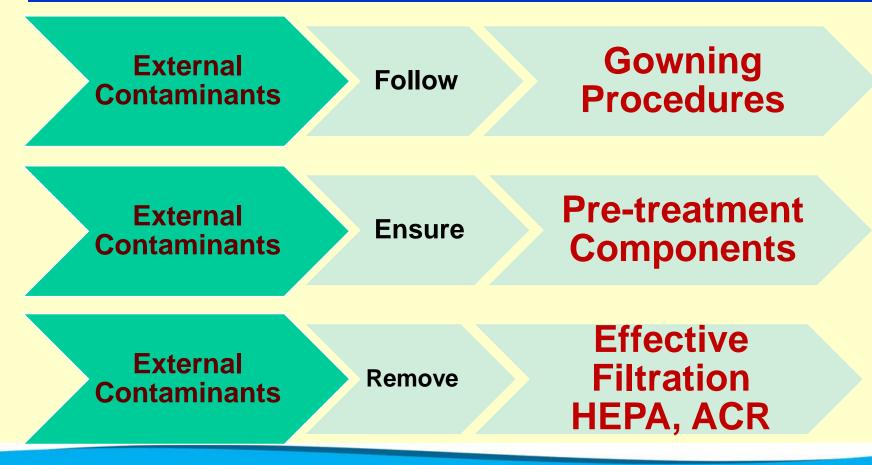
Types of contaminants

Viable Contaminant Bioburden	CFU= Colony Forming Units	
Viable Contaminant Endotoxin	Pyrogenic Cell Fragments	
NON Viable Contaminant External Particles	Production & Packaging Waste	
NON Viable Contaminant Chemical Particles	Excess Cleaning Agents	

September 25-26, 2014 Valencia, Spain

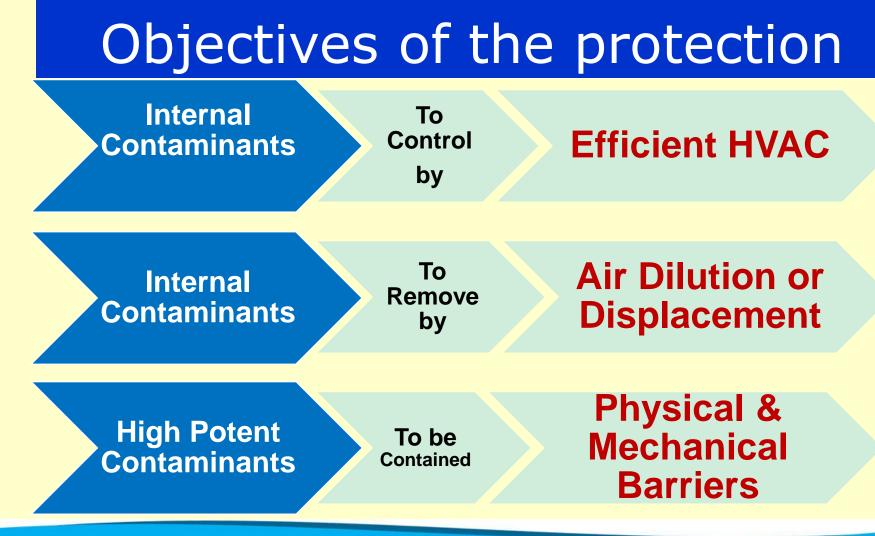
Reduction of Contaminant Technologies

Sterile Filtration	Reduce	Viable & Non Viable Content of Particles
SIP / SOP Sterillization	Reduce	Microbiological Contamination
Depyro, Thermal Chemical &Treatment	Remove	Endotoxin
CIP, Disinfection WFI Final Rince	Remove	VNV, Endotoxin Content of Particles



September 25-26, 2014 Valencia, Spain

GMP, GCP & Quality Control


Objectives of the protections

GMP, GCP & Quality Control September 25-26, 2014 Valencia, Spain

CAN

3rd International Summit on

September 25-26, 2014 Valencia, Spain

GMP, GCP & Quality Control

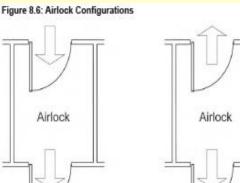
Contaminant & Their Removal Technology

TYPE OF CONTAMINANT	EXAMPLE DERIVED FROM: (Examples)		DEALT WITH BY: (Examples)		
Non-viable (particulates)	- Metal specks - Clothing fiber	 Equipment People's clothing Outside air Water supply 	 Airborne particles are HEPA filtered Contact parts are cleaned and sterilized. Water purification systems 		
Viable (micro-organism)	- Bacteria - Yeast molds	 People Water Outside air Equipment, tools Excipients, active ingredients 	 Limit aseptic core interventions Airborne particles are HEPA filtered Sterile filtration of solutions (0.2µm) Steam sterilization or irradiation of components 		
Endotoxins (Not normally associated with airborne bacteria)	 Arising from cell wall debris from certain organisms (often water borne) 	- Wet equipment change parts, or container/closure after a period of time exposure	 Caustic soda solution with heat High temperature (>200°C) time dependent 		

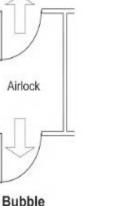
September 25-26, 2014 Valencia, Spain

Cascade

Means of Prevention / Design of rooms


✓ Segregation and flow :

1. Primary Segregation:


Physical Design of the unit of production:

- PAL & MAL,
- Corridors,
- Access Cards,
- Dedicated rooms,
- HVAC,
- Protection Systems,
- Clean Utilities.

2. <u>Secondary Segregation</u> :

GMP, GCP & Quality Control

40

Airlock

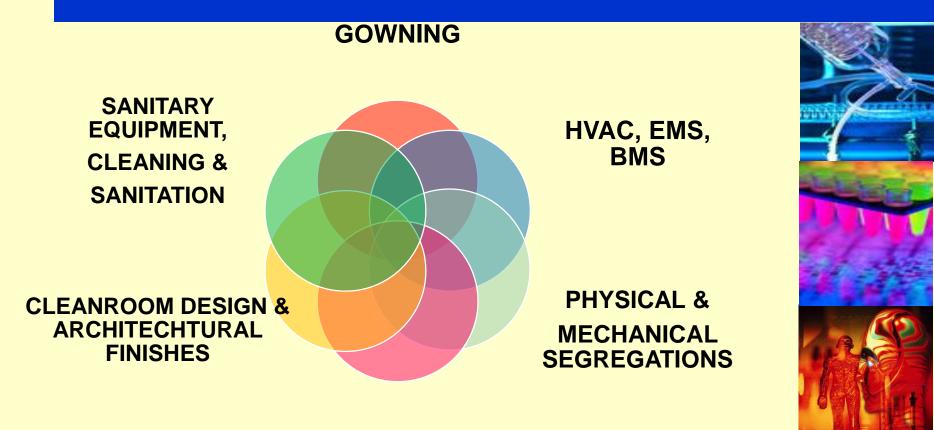
□Procedures for controls to reduce the risk of

contamination and cross-contamination

pbe@pharmabioeng.com • www.pharmabioeng.com

CANADA: 1.514.616.2692 • TUNISIE: 216.96.751.330 • MAROC: 212.622.629.224 • ALGÉRIE: 213.561.234.333

Dr. Aziz Chraibi , eng. HEALTH CANADA EXPERT PBE, Pharma Bio Expert Inc. President



3rd International Summit on

GMP, GCP & Quality Control September 25-26, 2014 Valencia, Spain

Means of prevention against contaminants

PROCEDURE

Dr. Aziz Chraibi , eng. HEALTH CANADA EXPERT PBE, Pharma Bio Expert Inc. President

CAN

3rd International Summit on

September 25-26, 2014 Valencia, Spain

GMP, GCP & Quality Control

GOWNING CODE

Classification	D (ISO8)	C (ISO7)	B (ISO5)			
Hair Cover (Bonnet)	Х	х	-			
Beard Cover (Couvre-barbe)	X	X	-			
Sterile Gloves (Gants stériles)	-	-	Х			
Smock (Sarrau)	X	-	-			
Coat (Cagoule)	-	-	Х			
Mask (Masque)	-	-	Х			
Shoes or Overshoes (Couvre- chaussures)	X	X	-			
Jacket & Pants (Veste & Pantalon)	-	Х	Х			
Bodysuit (Combinaison intégrale)	-	X	Х			
Boots (Bottes)	-	-	Х			
pbe@pharmabioeng.com • www.pharmabioeng.com IADA: 1.514.616.2692 • TUNISIE: 216.96.751.330 • MAROC: 212.622.629.224 • ALGÉRIE: 213.561.234.333						
PBE, VOTRE PARTENAIRE EN CONFOR	MITÉ ET EN INGÉ	NIERIE RÉGLEMI	ENTAIRE 44			

ISPE vol. 3-p20

3rd International Summit on

September 25-26, 2014 Valencia, Spain

GMP, GCP & Quality Control

Gowning-Classification Rooms

Terminology for Air Quality used in this Guide	Typical Area	Example of dress code	
External	Street, Restaurant	Outdoor clothes	
Unclassified	Laboratories, Offices, Warehouse	Appropriate to area	
Pharmaceutical	Packing Hall	Captive coat, hat and overshoes	
Class 100,000 (in operation)	Non-sterile processing	Clean garments	
Class 10,000 (in operation)	Room where filling takes place	Sterile garments	
Class 100 (in operation)	Point of fill or other aseptic manipulations	Sterile garments	

pbe@pharmabioeng.com • www.pharmabioeng.com CANADA: 1.514.616.2692 • TUNISIE: 216.96.751.330 • MAROC: 212.622.629.224 • ALGÉRIE: 213.561.234.333

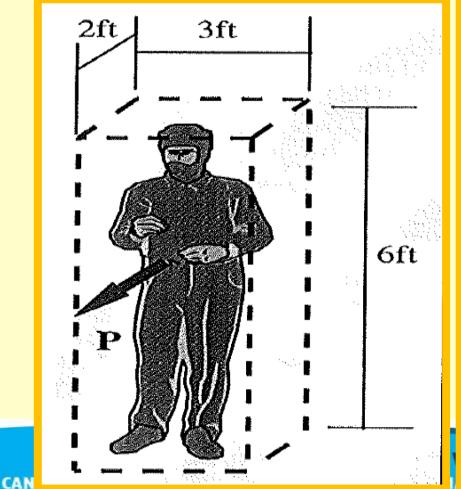
GMP, GCP & Quality Control September 25-26, 2014 Valencia, Spain

Major contamination vectors

- 1. Raw materials (powder, HP, biological material, aerosols)
- 2. Equipment
- 3. Personnel (skin and hair)
- 4. Environment (surface, air)
- 5. Utilities, (Steam, compressed air, water...)

pbe@pharmabioeng.com • www.pharmabioeng.com AN ADA: 1.514.616.2692 • TUNISIE: 216.96.751.330 • MAROC: 212.622.629.224 • ALGÉRIE: 213.561.234.333

Number of particles > 0.5 µm released/mn



MP, GCP & Quality Control

September 25-26, 2014 Valencia, Spain

Number of particles released by Clothing

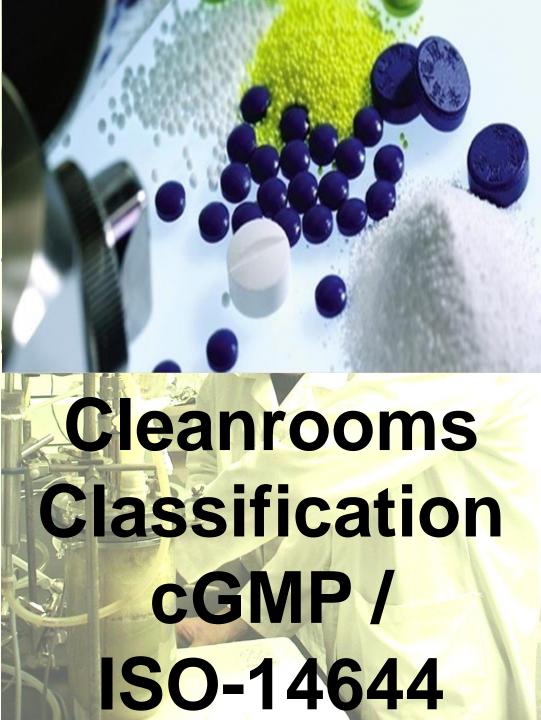
Volume of occupied space equals 36ft³ minus the volume of the operator = 18ft³

Starting condition assume Class 100.

Therefore, space contains 1800 particles at 0.5µm

Generation rate taken as $P = 1 \times 104 \ 0.5 \mu m$ particles per sec.

After 18secs 180,000 particles are released that takes the contained volume over class 10,000.


After 3mins 1,800,000 particles are released that exceeds Class 100,000 within the occupied space.

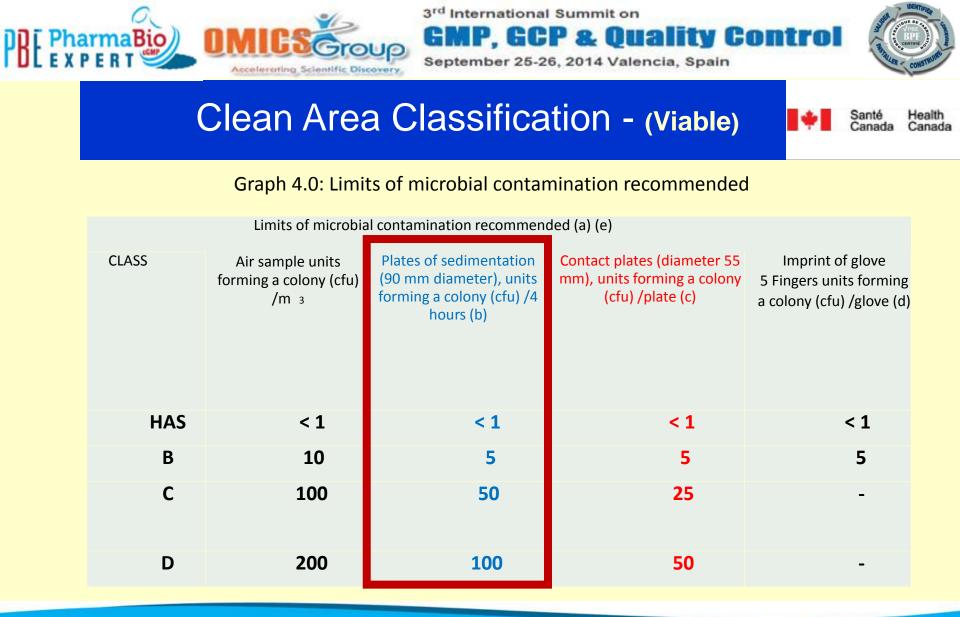
PBE, VOTRE PARTENAIRE EN CONFORMITÉ ET EN INGÉNIERIE RÉGLEMENTAIRE 48

Dr. Aziz Chraibi , eng. HEALTH CANADA EXPERT PBE, Pharma Bio Expert Inc. President

3rd International Summit on

50

September 25-26, 2014 Valencia, Spain


Clean Area Classification - (Viable) ANSM 04/12/2013

Limites recommandées de contamination microbiologique								
Classe	Echantillon d'air ufc/m ³	boîtes de Pétri (diam.:90 mm), ufc/4heures (b)			in an			
A	<1	<1	<1	<1				
В	10	5	5	5				
С	100	50	25	-				
D	200	100	50	-				

GMP/ ANSM, p60, &20. The thresholds of alert and appropriate action must be defined for

the results of the monitoring particulate and microbiological. In case of exceeding these limits, operational procedures must impose corrective measures

pbe@pharmabioeng.com • www.pharmabioeng.com CANADA: 1.514.616.2692 • TUNISIE: 216.96.751.330 • MAROC: 212.622.629.224 • ALGÉRIE: 213.561.234.333

pbe@pharmabioeng.com • www.pharmabioeng.com CANADA: 1.514.616.2692 • TUNISIE: 216.96.751.330 • MAROC: 212.622.629.224 • ALGÉRIE: 213.561.234.333

PBE, VOTRE PARTENAIRE EN CONFORMITÉ ET EN INGÉNIERIE RÉGLEMENTAIRE

51

September 25-26, 2014 Valencia, Spain

GMP, GCP & Quality Control

Clean Area Classification - (Viable) ANSM 04/12/2013

TABLE 1- Air Classifications^a

FDA U.S. Food and Drug Administration

Clean Area Classification	ISO Designation ^b	$\geq 0.5 \ \mu m$ particles/m ³	Microbiological Active Air Action	Microbiological Settling Plates Action Levels ^{c1}
$(0.5 \text{ um particles/ft}^3)$		pur trenes, m	Levels (cfu/m')	(diam. 90mm; cfu/4 hours)
100	5	3,520	1^{e}	1 ^e
1000	6	35,200	7	3
10,000	7	352,000	10	5
100,000	8	3,520,000	100	50

a- All classifications based on data measured in the vicinity of exposed materials/articles during periods of activity.

- b- ISO 14644-1 designations provide uniform particle concentration values for cleanrooms in multiple industries. An ISO 5 particle concentration is equal to Class 100 and approximately equals EU Grade A.
- c- Values represent recommended levels of environmental quality. You may find it appropriate to establish alternate microbiological action levels due to the nature of the operation or method of analysis.
- d- The additional use of settling plates is optional.
- e- Samples from Class 100 (ISO 5) environments should normally yield no microbiological contaminants.

CANADA: 1.514.616.2692 • TUNISIE: 216.96.751.330 • MAROC: 212.622.629.224 • ALGÉRIE: 213.561.234.333

Clean Area Classification - (Non-Viable) ANSM 04/12/2013

nationale de sécurité du médicamént mber 25-26, 2014 Valencia, Spain

PharmaBio

3rd International Summit on

GMP, GCP & Quality Control

53

	he particulate lim its indica Au d after a short time of pur	En activité				
minutes (guide value)						
Classe	Nombre maximal autorisé de particules par m ³ de taille égale ou supérieure aux tailles précisées.					
	0.5 µm (d)	5 µm	0.5 µm (d)	5 µm		
A	3520	20	→ 3520	20		
В	3520	29	→ 352000	2900		
С	352000	2900	3520000	29000		
D	3520000	29000	Non défini	Non défini		

pbe@pharmabioeng.com • www.pharmabioeng.com CANADA: 1.514.616.2692 • TUNISIE: 216.96.751.330 • MAROC: 212.622.629.224 • ALGÉRIE: 213.561.234.333

Equivalence Air Classification % BPFs % cGMP

Table 5-1 Airborne Environmental Requirements

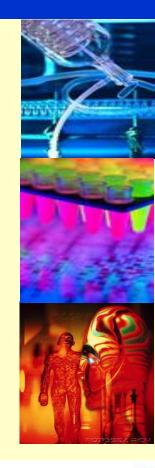
CA

ISPE Sterile Golde Grade (N.B. refer to	Guideline	, CDEH June on Sterile Dru septic Proces	g Products	Dratt USP (1116) February 1997 Microbiology Evaluation of Cleanrooms		European Commission Annex 1, 1997 - Manufacture of Sterile Medicinal Products					of Sterile
In-operation state)			-		Controlled nments	ISO 8 Activity = D Rest = C Activity					ctivity
	In Opera	ation ^{acts t}	Descriptive	In Op	eration	Descriptive	At Re	st ^{ocu t}		In Opera	ation
	Acceptable particulate quality per ft. ³	Maximum number of colony forming Units		Maximum permitted number of particles per ft. ³	Maximum number of colony forming units per ft. ¹		number o per m ³ e	permitted f particles qual to or (per fL ³)	number (per m³ é	n permitted of particles qual to or (per ft. ³)	Maximum number of colony forming units per m ³ (per 10ft ³)
	0.5µm and larger	CFU/1011		0.5µm and larger	CFU//L ³ (CFU/m ³)		0.5µm	5ព្រកា	0.5µm	5µm	CFU/m ³ (CFU/10/1 ³)
Class 100	100 ^{nde 2}	No more than 1	Critical Areas	160	Less than 0,1 (less than 3)	Grade A note 5	3500 ^{este 6} (100)	None	3500 (100)	None	Less than 1 (0.3)
Class 10,000				10,000	Less than 0.5 (less than 20)	Grade B	3500 (100)	None	350000 (10000)	2000 (57)	10 (3)
Class 100,000	100000 Pare 3	25	Controlled	100,000	(less than 100)	Grade C	350000 (10600)	2000 (57)	3500000 (100000)	20000 (570)	100 (30)
Pnarmaceutical (with local monitoring)	•					Grade D	3500000 (100000)	20000 (570)	•		200 (57)
Pharmaceutical	-			÷	-	VERSIA.		-			
111101		1000 1000									

J4

September 25-26, 2014 Valencia, Spain

GMP, GCP & Quality Control


Means of prevention / design of rooms

✓ Segregation and flow :

- 1. Primary Segregation :
 - □Physical Design of the manufacturing plant:
 - PAL & PAL airlocks,
 - Corridors,
 - Access Cards,
 - Dedicated manufacturing rooms,
 - HVAC,
 - Protection Systems,
 - Cclean Utilities

2. <u>Secondary Segregation</u> :

Procedures for controls to reduce the risk of contamination and cross-contamination

pbe@pharmabioeng.com • www.pharmabioeng.com canada: 1.514.616.2692 • TUNISIE: 216.96.751.330 • MAROC: 212.622.629.224 • ALGÉRIE: 213.561.234.333

September 25-26, 2014 Valencia, Spain

GMP, GCP & Quality Control

MURTINE CONSTRUME

Facility Design & Prevention Technologies

2.3 → Manufacturing areas are separated from nonmanufacturing areas. (Attention to SUSPENDED CEILINGS!)

\rightarrow Segregation :

 \rightarrow They are clearly defined and isolated.

Dr. Aziz Chraibi , eng. HEALTH CANADA EXPERT PBE, Pharma Bio Expert Inc. President

Cleanrooms Architectural **Finishes**

September 25-26, 2014 Valencia, Spain

GMP, GCP & Quality Control

Needs HVAC & Architectural

- ✓ Layout the cleanrooms & building
- \checkmark Air cleanroom classification according to
 - ISO-14644, FDA, EMA, Health Canada
- Construction Materials
- ✓ Architectural Finishes

	0	3rd In	ternational Summit on	SR J DENTIFICA	-
ENVIRONME NTAL		CHITECTURAL MATERIALS/F	INISHES GUIDE - ISPE vol. 3, p.	52 CLASS 10.000 AND 100	DICENDIA
STANDARD ARCHITECT URAL ELEMENT					
Tioors	practice is generally appropriate. Typical materials include concrete sealed gold coatings with a high level of wear resistance.		cleanable. Typical materials include sealed concrete, epoxy coatings, VCT seamless vinyl, CALUX) resistant coatings, and terrazzo floors. Capped With floor drains.	Should not have seals gold seams where microbial growth may occur. Should provide a solid, non-porous, clean and sanitizable surface. Typical materials include sheet vinyl and epoxy floor systems. Coved bases wall integral with the floor system. Floor drains and sinks are not permitted.	
walls	typical materials include wire mesh, gypsum board, CMU. Note that as a method of separating stored materials, devices such as stanchions, chains and moveable partitions are acceptable if proper production materials identification procedures are in place.	practice is generally appropriate. Typical materials include CMU, gypsum board, metal panels (with a finish material appropriate to the durability and cleanability requirements), glazed tile. Note that softer materials such as plastic aussi al-noor curtains can be used as a secondary method for preventing contamination, e.g. in conjunction with HVAC systems.	materials include CMU, gypsum board, metal panels (finished with epoxy paint), resinous coatings, gold metal type PVC cladding.	Should not have seals of seams where microbial growth may occur. Should provide a smooth, solid, non- porous surface. Typical materials include gypsum board, finished with paints of CALUX) resistant coatings, sheet vinyl gold sprayed on wall finishes, panel systems with gold metal vinyl surface finishes. Curved/rounded corners are used to enhance cleanability.	
	Ceilings are generally not required in thesis areas if material gold product is not exposed (e.g. normalement bas in a warehousing	Ceilings are generally required in these areas. Typical materials included suspended grid systems (mylar, PIB, metal or other cleanable, non-porous surfaces).	protection from contaminants from non-environmentally controlled areas, i.e. above ceiling space. Typical materials include sealed (i.e. caulked in place) suspended grid systems (mylar, PIB, metal or other cleanable, non-porous	Should not have seals gold seams where microbial growth may occur. Should provide a smooth, solid, cleanable, sanitizable, non-porous surface. Typical materials include gypsum board, finished with paints of chemical resistant coatings, sheet vinyl gold sprayed-on wall finishes, panel systems with gold metal vinyl surface finishes. Fixtures (lights,	
	· · · · · · · ·				

room pressure.

or not have any horizontal surfaces

	0	3rd Inf	ternational Summit on	Barning Stranger
ENVIRONMENTA L STANDARD ARCHITECTURA L ELEMENT	UNCLASSIFIED	PHARMACEUTICAL	CLASS 100.000	CLASS 10.000 AND 100
Details d	details are generally appropriate.	bases are not required, baseboards are suggested to protect wall bases, particularly when materials such as gypsum	are not required, but are suggested to enhance cleaning ease and to protect wall databases particularly when materials such as gypsum	Coved and splayed full floor databases should be provided. In addition wall/wa and wall/ceiling covings should be provided .
Wall/Wall			Rounded wall/wall and wall/ceiling details are preferred.	
Wall/Ceiling				
Windows b	building code requirements.	code requirements.	a painted finish, PIB in high washdown or corrosive areas. Vision panels may be glass (regular gold reinforced), Plexiglas, Lexan, or equivalent materials. Horizontal surfaces should be accessible for easy cleaning. Flush glazing is not required, but should be considered to enhance cleanability. Meet building codes. Drop sills there doors not needed if HVAC can accommodate leakage.	Lexan, or equivalent material. All surfaces should be designed and designed an artificial to be accessible for cleaning. Stainless steel may be used for construction of the door, hardware and kick/mop platforms, aim is not mandatory.
a b S ii	as required to comply with building and related codes. Suitability for any for industrial use is recommended.	required to comply with building and related codes. Suitability for any for industrial use is recommended.	access for cleaning. Typically, plated metals gold stainless steel.	Recessed and comes, where possible, accessible for cleaning. Typically, plated metals gold stainless steel.
(through r	required, except as necessary for fire	prevent contamination between areas, with escutcheon platforms suggested.	caulk normalement bas acceptable) to prevent contamination between areas, with escutcheon recommended platforms. Fis has fire resistant sealant is required, it should be installed with silicon (or	should be installed with silicon (or similar) caulking installed over its surface, gold covered by year flat escutcheon if tea fire resistant material does not provide a smooth fini

September 25-26, 2014 Valencia, Spain

GMP, GCP & Quality Control

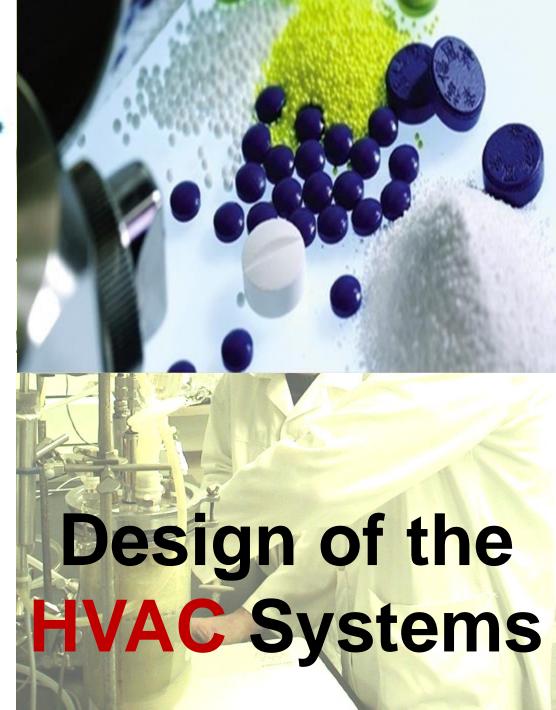
Architectural Finishes

- \checkmark Is this acceptable:
- Suspended Ceiling / CLASS D?
 - 1. Manufacturing aera
 - 2. Corridor & SAS
 - 3. Washing area
 - 4. Warehouse CNC

September 25-26, 2014 Valencia, Spain

Architectural Finishes

September 25-26, 2014 Valencia, Spain


Architectural Finishes

Dr. Aziz Chraibi , eng. HEALTH CANADA EXPERT PBE, Pharma Bio Expert Inc. President

September 25-26, 2014 Valencia, Spain

MP, GCP & Quality Control

HVAC & AHU

Different types of models of cleanrooms in the

- pharmaceutical industry:
- HVAC ventilation,
- Turbulent Flow,
- Unidirectional vs Laminar
- ► Recycling Air Flow Rate ?
- ► Air supply Flow Rate ?
- Particles content ?
- Sizes of the rooms?
- HVAC system for contaminants removal effectiveness

3rd International Summit on

Critical items / Clean Rooms / HVAC WHO-TRS-961-2011

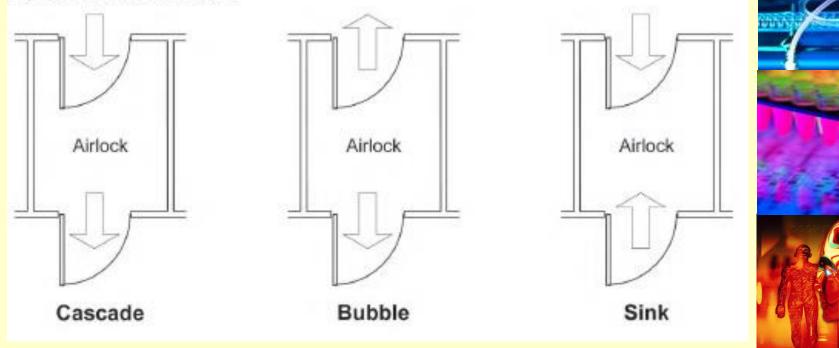
- 1. Architectural finishes, structures
- 2. Air Filtration, Air Change Rate, Recycling, Direct Exhaust
- Psychrometric conditions of the atmospheric air 3.
- 4. Pressure & air classification cascade between rooms
- 5. Position of the terminal filters and airflow direction
- 6. Temperature & Relative Humidity RH% range
- 7. Material, Peronnel, RW, FG Flows
- 8. Gowning, Cleaning, Disinfection procedures
- 8. Open vs Closed Systems vs products MSDS, HP, HSE, ATEX

3rd International Summit on **GMP, GCP & Quality Control** September 25-26, 2014 Valencia, Spain

Description of the HVAC and Classrooms

- Fresh Air Rate (HSE requirement)
- Air Change Rate : ACR (Cleanliness issues)
- Recovery Time of level of cleanliness (Interlock of PAL & MAL doors)
- VNV Particle count

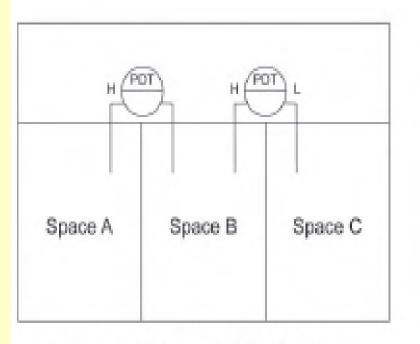
3rd International Summit on **GMP, GCP & Quality Control** September 25-26, 2014 Valencia, Spain


Recovery Time / WHO - TRS 937, page 65/478

- Normalement Bas has room that is tested for year
 "operational " condition should be able to be cleaned up to the " at-rest " clean area classification after a short clean-up time.
- The clean-up time should be determined through validation and is generally of the order of 20 minutes

Cascade of pressure / PAL & MAL

Figure 8.6: Airlock Configurations



3rd International Summit on

September 25-26, 2014 Valencia, Spain

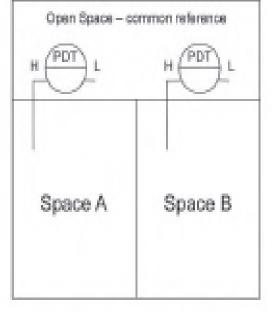

Configuration of differential pressure measuren

Figure 8.10: DP Sensor Locations

Room-to-Room Monitoring

Common Reference Monitoring

70

pbe@pharmabioeng.com • www.pharmabioeng.com CANADA: 1.514.616.2692 • TUNISIE: 216.96.751.330 • MAROC: 212.622.629.224 • ALGÉRIE: 213.561.234.333

3rd International Summit on

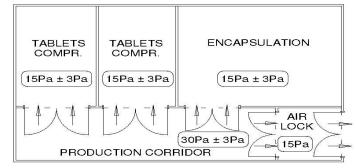
September 25-26, 2014 Valencia, Spain

MP, GCP & Quality Control

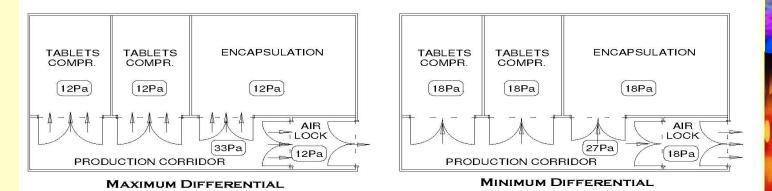
Air supply system (HVAC)

Based on what the design?

NEBB / BPF EMA : require cascade of pressure a pressure differential of 0,05" / 0.06inwc = 12.5 / 15Pa)
 between each level of air classification



September 25-26, 2014 Valencia, Spain


GMP, GCP & Quality Control

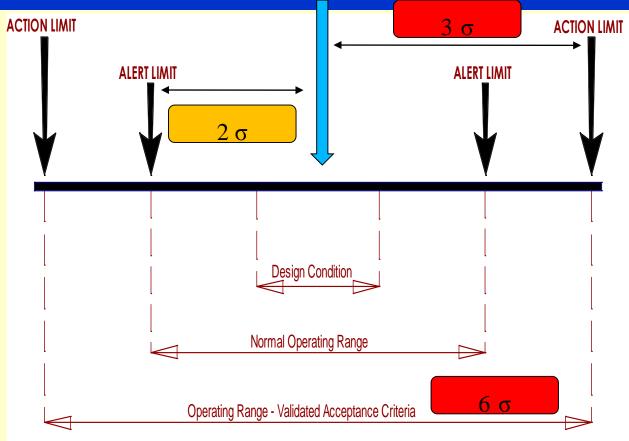
72

Prevention Technology / Cascade of pressure

DESIGN CONDITION

pbe@pharmabioeng.com • www.pharmabioeng.com CANADA: 1.514.616.2692 • TUNISIE: 216.96.751.330 • MAROC: 212.622.629.224 • ALGÉRIE: 213.561.234.333

MP, GCP & Quality Control



September 25-26, 2014 Valencia, Spain

URS : DESIGN APPROACH

- Design conditions (±1 * Sigma)
- Normal operating ranges set to achievable limits
- Alert Points (±2 * Sigma) OOT
- Action Points (±3 * Sigma)
- OOS results recorded

► CAPA

Action Limits = Average + /- 3 sigma Warning limits = Average + /- 2 sigma Sigma = gap type/ 1.128

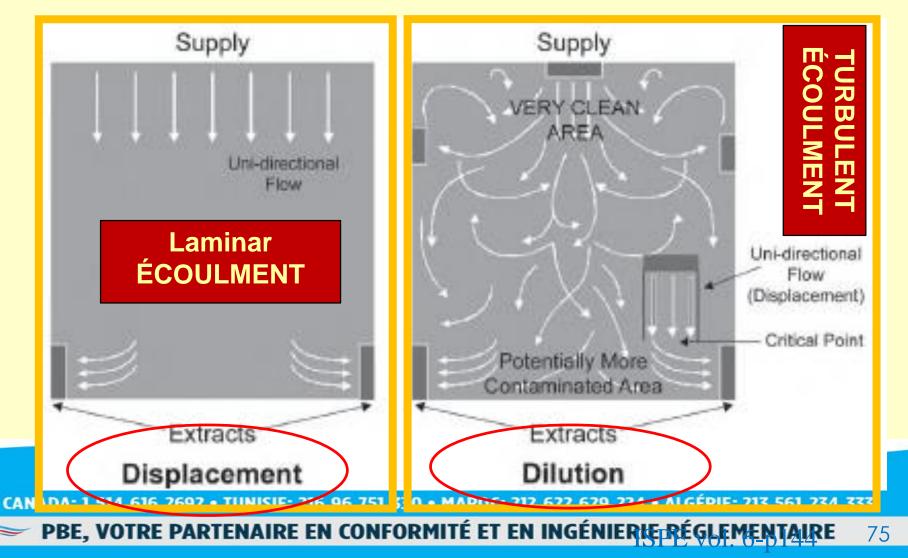
61.234.333 FAIRE 73

Facility Design

Nom du lient

Classification des locaux - Bâtiment

Local	No.	DIME * 6	ENSIO (m) appro		Surface	Volume	Degré de risque	Aseptique (IIIb) Ispe		CI ASSIFICATION		Temps maximum de récupération (< 15 mn / EMEA)	Taux de Changement d'Air minimum (ACR)	Drocerirication		Température	Humidité	Capteurs	Désinfection :	Liquide Poussière Solvant Vapeur	Chaeur dégagée		Kemarques
Nom du Local	Local No.	L	Ρ	н	(m ²)	(m ³)	1/2/3/4	Oui / Non	FDA	ISO 14644-1	Repos / Activité	(mn)	(/h)	signe vs local adjacent	(Pa)	(°C)	(% HR)	Τ ΔP RH% CP N2	VHP (V), Formol (F), Alcool ou Anios (A)	L, P, S, V	KwH	Code habillement G1 à G6	Nombre maximal de personnes dans le local
no	1									8			20										
oduct	2									7			30										
Aire de Production	3									6			90										
Aire	4									5			150										



GMP, GCP & Quality Control

September 25-26, 2014 Valencia, Spain

Air Flow Pattern : Air Diffusion or by Displacement

September 25-26, 2014 Valencia, Spain

MP, GCP & Quality Control

UDAF vs LAF Sampling & Weighing Booth

- ✓ 4.3.3 Sampling of materials
- Such as starting materials, WHO_TRS-937 p71
- \checkmark Primary packaging materials and products ,
- Should be carried out
- ✓ In the same environmental conditions
- ✓ That are required for
- \checkmark The further processing of the product .

pbe@pharmabioeng.com • www.pharmabioeng.com CANADA: 1.514.616.2692 • TUNISIE: 216.96.751.330 • MAROC: 212.622.629.224 • ALGÉRIE: 213.561.234.333

September 25-26, 2014 Valencia, Spain

MP, GCP & Quality Control

UDAF vs LAF Sampling & Weighing Booth

- ✓ 4.3.4 In a **weighing booth** situation,
- ✓ The aim of the design using UDAF
- Should be to provide dust containment'.

Required? CDP under Laminar Flow?

- ✓ 4.3.5 A dispensary or weighing booth
- Should be provided with
- Unidirectional airflow
- ✓ For protection
 - ✤ Of the product
 - And operator

Safe Operation under a Booth

WHO_STERILE

ncia, Spain

UDAF vs Laminar Air Flow

PREPA

PharmaBio

Minimum required	UDAF	Laminar Air Flow
1- HEPA Filter	Yes	Yes
2- Integrity Test	Yes (12 Months)	Yes (6 to 12 Months)
3- Speed	0.2 to 0.45 m/s ± 20% 15-30cm under HEPA	0.45M/s ± 20% (Less 4 RABS) 15-30cm under HEPA
4- Unidirectional Flow	Yes + Air Flow Test (Smoke)	Yes + Air Flow Test / Smoke
5- Air Classification Particles	ISO7, C (+ If Aseptic)	ISO5, A
6- Continuous Monitoring of particles account	Non	Yes (A + Critical Processes)
7- Operators may work under the booth	Yes	Non
8- Differential Pressure	+	+
9- Protection of	Product & Personnel	Product

September 25-26, 2014 Valencia, Spain

GMP, GCP & Quality Control

OMICS Group

MANUER CONSTRUCT

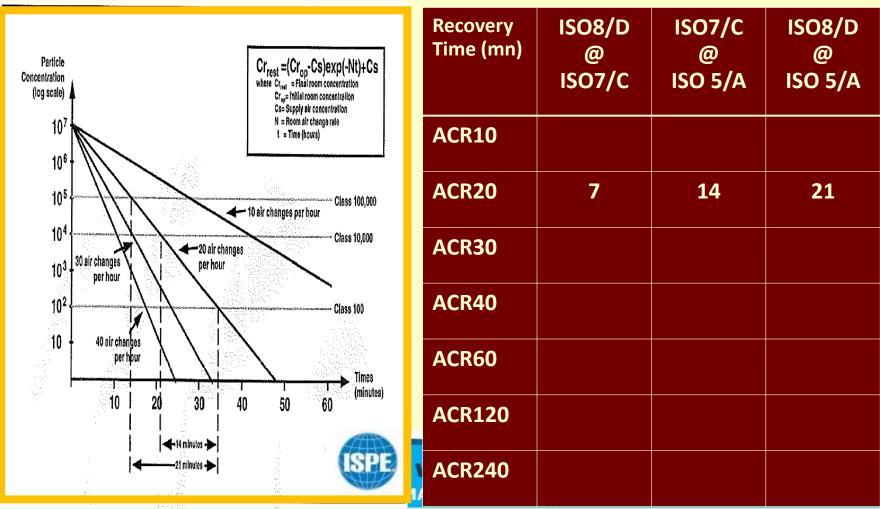
AIR SHOWER

September 25-26, 2014 Valencia, Spain

MP, GCP & Quality Control

Air supply system Capacity (HVAC)

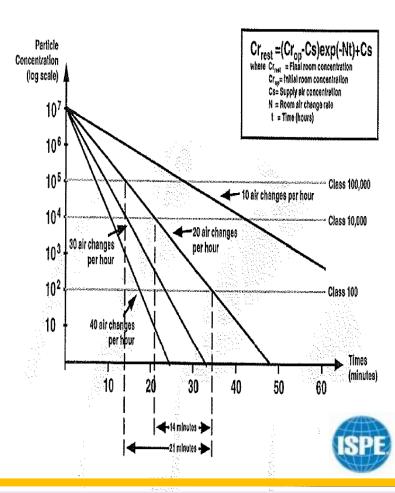
The sizing of the HVAC unit (its Cost \$\$\$) will depend :


- 1. Internal contaminant loads
- 2. Dissipated heat by the equipment
- 3. Number of working personnel
- 4. Cleanroom air classification
- 5. Type of filtration (<u>HEPA</u>)
- 6. Loses of the pressure on the Filters
- 7. Hourly ACR : air change rate
- 8. <u>Temperature</u> & RH% difference between Fresh air and CR.

CAN

 $Cr_{Rest} = (Initial Cr - C_s) exp(-N.t) + C_s$

RECOVERY TIME of the air quality ISPE, ISO-14644-3 (B12)



GMP, GCP & Quality Control

September 25-26, 2014 Valencia, Spain

Recovery Time of the Air Quality ISPE, ISO-14644-3 (B12)

armaBic

CAN

The "clean-up " or " recovery " test should demonstrate a change in particle concentration by a factor of 10 to 100 Within the prescribed time. (WHO, Annex 4, Sterile) (ISO 14644-3 clause B. 12)

www.pharmabioeng.com IAROC: 212.622.629.224 • ALGÉRIE: 213.561.234.333

84

Maximum permitted airborne particle concentration

	Maximum permitted number of particles per m ³ greater than or equal to the tabulated size								
	At r	estª	In operation ^b						
Grade	0.5 µm	5.0µm	0.5 µm	5.0µm					
А	3 520	20	3 520	20					
В	3 520	29	352 000	2 900					
С	352 000	2 900	3 520 000	29 000					
D	3 520 000	29 000	Not defined	Not defined					

^a The "at rest" state is the condition where the installation is complete with equipment installed and operating in a manner agreed upon by the customer and supplier, but with no personnel present.

^b The "in operation" state is the condition where the installation is functioning in the defined operating mode and the specified number of personnel is present. The areas and their associated environmental control systems should be designed to achieve both the "at rest" and "in operation" states.

September 25-26, 2014 Valencia, Spain

HVAC Design vs Level Protection & Classification / ISPE

Level	Condition	Example of area
Level 1	General	Area with normal housekeeping and maintenance where there is no potential for product contamination, e.g. warehousing.
Level 2	Protected	Area in which steps are taken to protect the pharmaceutical starting material gold product from direct or indirect contamination or degradation, e.g. secondary packing, warehousing, first stage changed rooms.
Level 3	Controlled	Area in which specific environmental conditions are defined, controlled and monitored to prevent contamination or degradation of the pharmaceutical starting material gold product, e.g. where product, starting materials and components are exposed to the room environment; more equipment wash and storage areas for equipment product contact parts.

CANADA: 1.514.616.2692 • TUNISIE: 216.96.751.330 • MAROC: 212.622.629.224 • ALGÉRIE: 213.561.234.333

CAI

3rd International Summit on

September 25-26, 2014 Valencia, Spain

Levels of protection and recommended filtration / ISPE

Level of Protection	Recommended Filtration					
Level 1	Primary filters only (e.g. IN 779 G4 filters)					
Level 2	Protected areas operating on 100% outside air: primary more Secondary filters (e.g. IN 779 G4 more F8 or F 9 filters)					
Level 3	 Production facility operating it recirculated more ambient Air, where potential for cross-contamination exists: Primary plus secondary more tertiary filters (e.g. IN 779 G4 more F8 more 1822 H13 filters) for full fresh air system , without 					
standards (IN classes E10 t	Recirculation, G4 and F8 or F 9 filters are acceptable) Note: The filter classifications shallbe referred to above relate to the 1822 and in 779 test standards (IN 779 recounted to filter classes G1 to F9 and 1822 recounted to filter classes E10 to U17). Refer to Figure 8 for comparative classifications of other filter					
standards. pbe@pharmabioeng.com • www.pharmabioeng.com IADA: 1.514.616.2692 • TUNISIE: 216.96.751.330 • MAROC: 212.622.629.224 • ALGÉRIE: 213.561.234.333						
PBE, VOTRE P	ARTENAIRE EN CONFORMITÉ ET EN INGÉNIERIE RÉGLEMENTAIRE 87					

0

PB

	- 14	210 International Cun	anait on	WUNTIFIER			
TABLE 6-1 - Suggested minimum design values (see text for details/exceptions)							
CONTROLLED VARIABLE	LEVEL I	LEVEL II	LEVEL IIIa Non - aseptic	LEVEL IIIb Aseptic			
Temperature	50-105F (10-40.6°C)	Product regmt	Product regmt	Product regmt			
RH	20-60% recomm	Product regmt	Product regmt	Product regmt			
Room classification	none	none	none	Class 10,000 EC Grade B			
Supply air filter	30% ASHRAE	30% ASHRAE*	85% ASHRAE*	HEPA 99.97%			
Room air changes	Codes & NFPA	Codes & NFPA	Codes & NFPA	20 (Unidirectional flow ** at product)			
Differential Pressure	none	protect the product	controlled airflow	0.05 or 0.06 inch wg (12.5 or 15 Pascal) positive			
Differential Pressure (potent)	none	negative	negative or positive to anteroom	Pressure buffer at 0.05 or 0.06 inch wg (12.5 or 15 Pascal)			
Outdoor air	code & & ASHRAE62	code & ASHRAE62	code & ASHRAE62	As required for pressurization §			
Duct material	galvanized steel, aluminum	galvanized steel, aluminum	galvanized steel, aluminum	Stainless steel, plastic, or cleanable equivalent where exposed to room			
Duct leakage	This is an economic	decision, follow SMA	CNA standards				
Validation	none	Product req. •	Product req. •	Product req. ♦ + air changes + HEPA**			
•	For once through ai	r. Recirculated air ma	v require additional to	reatment			
 For once through air. Recirculated air may require additional treatment Pinhole scanned 99.99% HEPA filtration of air in direct contact with product, air class 100 or better at product, unidirectional flow at nominal 90 ft/min (0.46m/s). EC Grade A. See ASHRAE Applications, ISO/IES or forthcoming ISPE Guide on aseptic production facilities. 							
ş	It is assumed that the	he volume of makeup uired by ASHRAE 62.		n will provide more			
٠		/ alarms / recorders f		arameters			

For details of American Society of Heating, Refrigeration, and Air Conditioning Engineering (ASHRAE) and Sheet Metal & Air Conditioning Contractors' National Association (SMACNA) standards see Chapter 12 References.

Dr. Aziz Chraibi , eng. HEALTH CANADA EXPERT PBE, Pharma Bio Expert Inc. President

Detailed Design of HVAC Components

APPROXIMATION OF EQUIVALENT FILTER STANDARDS

Ē PharmaBio	EU Class			% (integral Value)	EN 779 & EN 1822		rol	And Comments of the second sec
LEATENT S				99,99995	U16	†		COM
				99,9995	U15	~~~ N		
	14			99,995	U14	EN 1822		
	13			99,95	H13	18		
	12					z		
	11		%	99,5	H12	U I		
	10		(Average)	95	H11			
	9		95	85	F9/H10			
	8		90	75	F8			
			85		F7			
	7		80					
			75					
	6		70		FG			
			65					
	.		60					
	5		55				$\lambda \Lambda / I$	
			50 45		F5			HO
		%	45			<u>୍</u>		
	.	70 (Average)	35				TCD	027
	4	95	30		G4	EN 779		.937 e 69
		90	25			Ш		
	3	85	20		G3		Dag	060
		80					rag	e 05
	-	75	· 					
	2	70			G2			
		65						
			·		G1			
	•	▲	•	•	↓			
	Eurovent Class-	Arrestance	Dust Spot	MPPS, DEHS	CEN/TC/195	+		
T	Eurovent 4/5 (2-9) Eurovent 4/9 (2-9)	Arrestance %	Efficiency ASHRAE 52/76	Aerosol	WG1-G1-F9		1	
	Eurovent 4/9 (2-9) Eurovent 4/4 (10-14)		BS6540 Part 1	EN1822	WG2-H10-16			
CANADA: 1.514		<u>,</u>	(1985)				13.561.234	.333
🗢 PBE, VO		-					ENTAIRE	90
1 51, 10		Fig	g. 4.7 Compar	rison of filter test	t standards			70

September 25-26, 2014 Valencia, Spain

GMP, GCP & Quality Control

91

Table 1: Values ASHRAE 52.2 &779 **HEPA Filters**

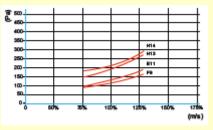
Filter Value ASHRAE 52.2 (Eurovent IN779)	Loss of load Initial maximum (Inches of col. of water/Pa)	Loss of load The recommended Filter change (Inches of col. of water/ Pa)
Merv 8 (G4)	0.10 / 25	0.20 / <mark>50</mark>
Merv 11 (G4)	0.32 / 80	0.65 / 160
Merv 13 (F7)	0.40 / 100	0.80 / 200
Merv 15 (F9)	0.50 / 125	1.0 / 250
HEPA Filters online	0.60 / 150	1.2 / <mark>300</mark>
Filters HEPA / ULPA	0.50 / 125	1.0 / 250

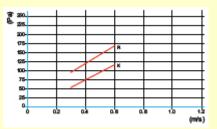
pbe@pharmabioeng.com • www.pharmabioeng.com

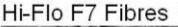
CANADA: 1.514.616.2692 • TUNISIE: 216.96.751.330 • MAROC: 212.622.629.224 • ALGÉRIE: 213.561.234.333

September 25-26, 2014 Valencia, Spain

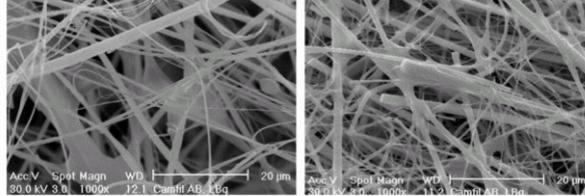
HEPA Filters






September 25-26, 2014 Valencia, Spain

HEPA Filters



7 Ø fibres ⇒ ¥ efficacité 7 Densité de fibres ⇒7 efficacité

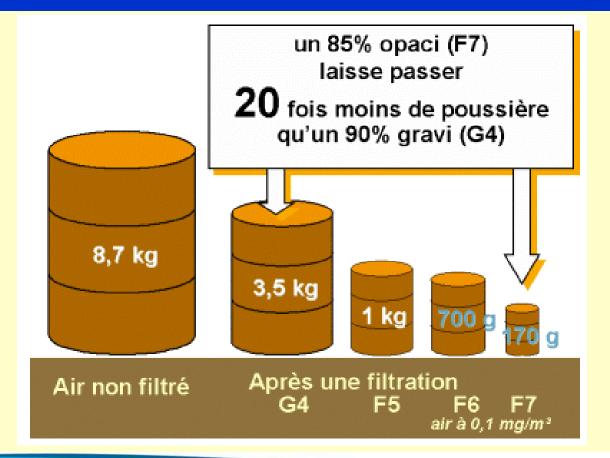
Megalam H14 Fibres

pbe@pharmabioeng.com • www.pharmabioeng.com CANADA: 1.514.616.2692 • TUNISIE: 216.96.751.330 • MAROC: 212.622.629.224 • ALGÉRIE: 213.561.234.333

September 25-26, 2014 Valencia, Spain

GMP, GCP & Quality Control

Integrity Test HEPA Filters


Challenge Aerosols Fre Testing		
DEHS (DOS), a liquid	Di-ethyl hexyl sebacarte	Efficacité 99,995% ≠ 99,995%
DOP , liquid	Di-octyl phthalate	Efficacité NaCl
Emery 3004, liquid	Product name for a type of PAO	Efficacite DOP
PAO , liquid	Poly-alpha olefin	Efficacité MPPS 0,001 0,05 0,1 0,5 1 0,001 0,05 0,1 0,5 1 MPPS DOP (um)
PSL	Poly-styrene latex spheres	~0,15µm ^{~0,3} µm NaCl~0,4µm
Shell Ondina EL, liquid	Refined mineral oil	
Total Finaveston A80B, liquid	Refined mineral oil	

pbe@pharmabioeng.com • www.pharmabioeng.com CANADA: 1.514.616.2692 • TUNISIE: 216.96.751.330 • MAROC: 212.622.629.224 • ALGÉRIE: 213.561.234.333

What Filter category Should I install?

September 25-26, 2014 Valencia, Spain

GMP, GCP & Quality Control

96

ABSOLUTE FILTERS

What reference for validation?

1.Effectiveness overall MPPS?

1.Effectiveness local MPPS?

pbe@pharmabioeng.com • www.pharmabioeng.com CANADA: 1.514.616.2692 • TUNISIE: 216.96.751.330 • MAROC: 212.622.629.224 • ALGÉRIE: 213.561.234.333

September 25-26, 2014 Valencia, Spain

MP, GCP & Quality Control

ABSOLUTE HEPA FILTERS

Standards

Two standards govern the filters:

 1822: this standard deals with testing of performance of the filters to very high efficiency (HEPA) and very low penetration (ULPA)

Note:

The value of **the overall MPPS efficiency** is the one being searched for the qualification tests .

MPPS : Most Penetrative Particle Size

September 25-26, 2014 Valencia, Spain

GMP, GCP & Quality Control

Tests: ISO-14644 vs Classification

98

Table 2: Required Testing (ISO 14644-2)

Schedule of Tests to Demonstrate Continuing Compliance	
--	--

Test Parameter	Class	Maximum Time Interval	Test Procedure
Particle Count Test	<= ISO 5 > ISO 5	6 Months 12 Months	ISO 14644-1 Annex A
Air Pressure Difference	All Classes	12 Months	ISO 14644-1 Annex B5
Airflow	All Classes	12 Months	ISO 14644-1 Annex B4

pbe@pharmabioeng.com • www.pharmabioeng.com CANADA: 1.514.616.2692 • TUNISIE: 216.96.751.330 • MAROC: 212.622.629.224 • ALGÉRIE: 213.561.234.333

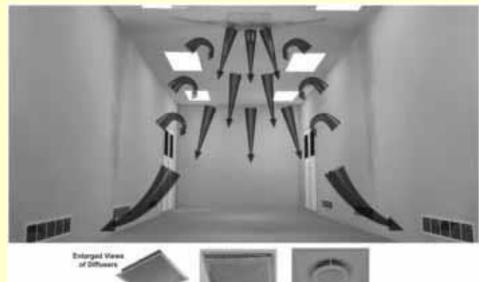
Optional Tests: ISO-14644 vs Classification

99

Table 3: Optional Testing (ISO 14644-2)

Schedule of Additional Optional Tests							
Test Parameter	Class	Maximum Time Interval	Test Procedure				
Installed Filter Leakage	All Classes	24 Months	ISO 14644-3 Annex B6				
Containment Leakage	All Classes	24 Months	ISO 14644-3 Annex B4				
Recovery	All Classes	24 Months	ISO 14644-3 Annex B13				
Airflow Visualization	All Classes	24 Months	ISO 14644-3 Annex B7				

pbe@pharmabioeng.com • www.pharmabioeng.com CANADA: 1.514.616.2692 • TUNISIE: 216.96.751.330 • MAROC: 212.622.629.224 • ALGÉRIE: 213.561.234.333



September 25-26, 2014 Valencia, Spain

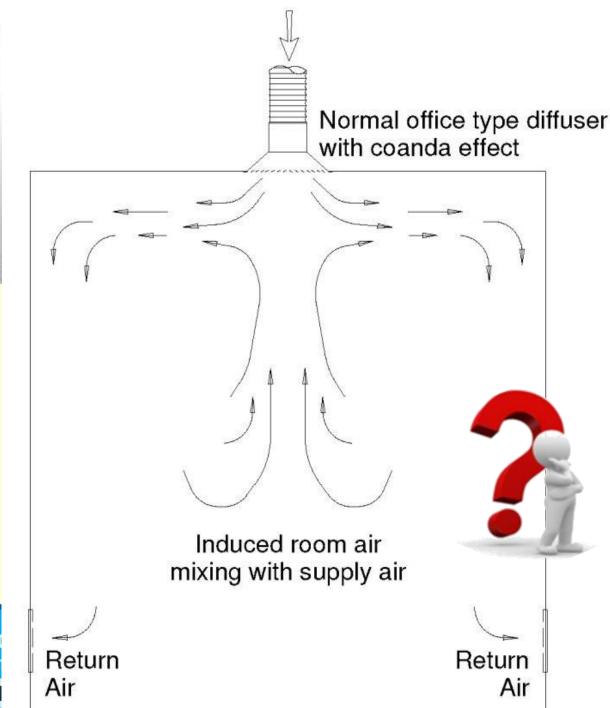
HVAC Components Design

22. Supply diffusers :

- By induction
- By perforated plate

3rd International Summit on MP, GCP & Quality Control

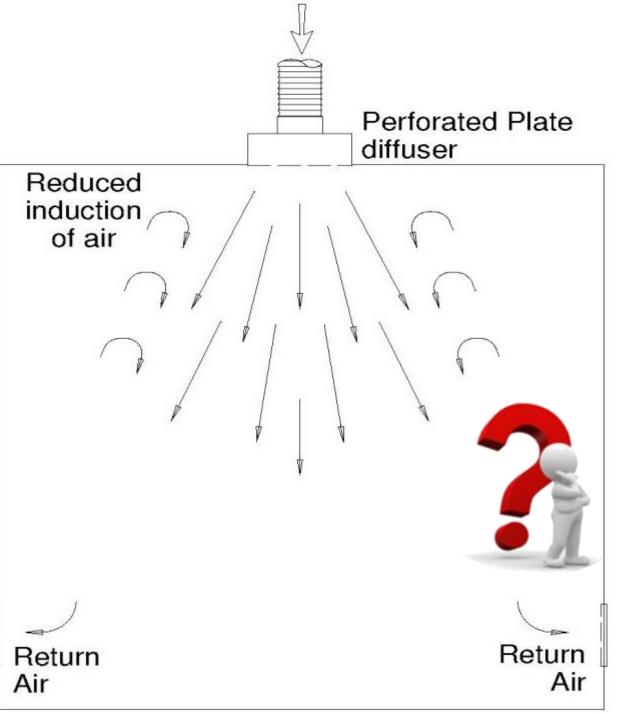
Elements of HVAC design - WHO - TRS-929 (Annex 3)


- ✓ 4.2.9 Supply air DIFFUSERS of the high INDUCTION type (e.g. those typically used for office-type airconditioning) should where possible not be used in clean areas where dust is liberated.
- Air diffusers should be of the non-induction type, introducing air with the least amount of induction so as to maximize the flushing effect

Induction diffuser

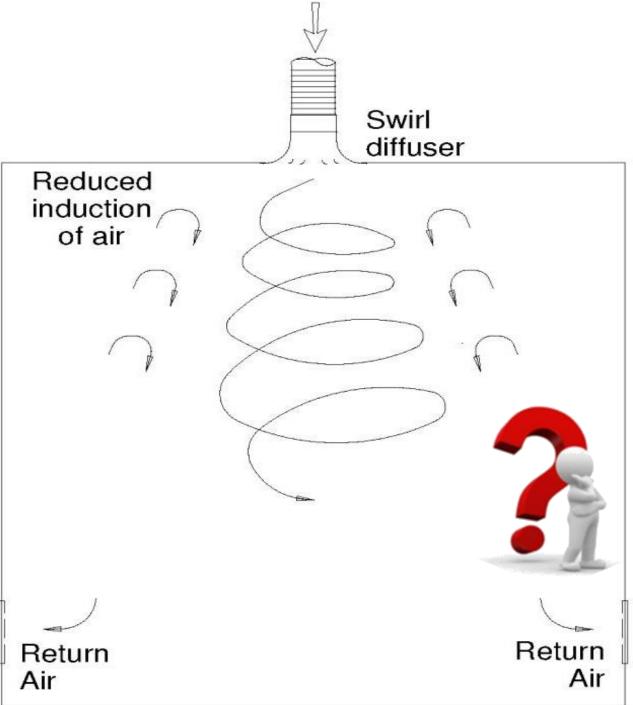
 ✓ Fig. 4.8 (WHO Working document QAS/02,048 /Rev. 1)
 Induction diffuser
 (Not recommended)

pbe@pharmabic CANADA: 1.514.616.2692 • TUNISIE: 2 PBE, VOTRE PARTENAIRE I



✓ Fig. 4.9 (WHO Working document
 QAS/02,048 /Rev. 1)

Perforated plate diffuser (Recommended)



✓ Fig. 4.10 (WHO Working document
 QAS/02,048 /Rev.
 1)

Swirl diffuser (recommended)

September 25-26, 2014 Valencia, Spain

P, GCP & Quality Control

HVAC Design Elements - API / OSD / RH % WHO-2011-06 / TRS 961

4.9.4 Cubicles, or suites, in which products requiring low relative humidity are processed, should have **well-sealed walls and ceilings** and should also be **separated** from adjacent areas with higher relative humidity by means of suitable airlocks.

September 25-26, 2014 Valencia, Spain

P, GCP & Quality Control

Design Elements - API / OSD / RH % WHO-2011-06 / TRS 961

4.9.9 Humidifiers should be avoided if possible as they may become a source of contamination (e.g. microbiological growth).

A product-contamination assessment should be done to determine whether **pure or clean steam** is required for the purposes of humidification.

Éléments de conception – API / OSD / RH % WHO-2011-06 / TRS 961

September 25-26, 2014 Valencia, Spain

4.9.9 Humidifiers should be avoided if possible as they may become a source of contamination (e.g. microbiological growth).

A product-contamination assessment should be done to determine whether **PURE OR CLEAN STEAM** is required for the purposes of humidification.

Application of GMP

3rd International Summit on

CASE STUDY

ASEPTIC

(STERILE) DESIGN

GMP, GCP & Quality Control

September 25-26, 2014 Valencia, Spain

