The Clinical Impact of Rapid Nucleic Acid Amplification Tests for Detection of *M. tuberculosis*

DR. PHYLLIS DELLA-LATTA, D(ABMM), FAAM
DIRECTOR, CLINICAL MICROBIOLOGY SERVICE
PROFESSOR, CLINICAL PATHOLOGY IN MEDICINE
COLUMBIA UNIVERSITY MED CENTER (CUMC),
NEW YORK-PRESBYTERIAN HOSPITAL
NEW YORK, NEW YORK USA
"TOWARDS ZERO TB"

GLOBAL BURDEN IS ENORMOUS

• *GLOBAL PANDEMIC
 ✓ 9 Million Cases Annually
 ✓ 2 Billion People Infected

• GLOBAL MORTALITY
 ✓ 2 Million Cases annually

• GLOBAL MDR DRUG RESISTANCE
 ✓ Hot Spots (60% of Cases)
 – India, China, Russian Federation
 ✓ MDR: 1 in 20 new cases
 ✓ XDR-TB: 84 countries
 ✓ Totally Drug Resistant Strains
 • Mumbai 2012

• TB ANYWHERE IS TB EVERYWHERE

TB IN THE BIG APPLE

“I’m in a NY State of mind”
HISTORY OF TB IN NYC

BREAKING THE CHAIN OF TRANSMISSION

<table>
<thead>
<tr>
<th>1992</th>
<th>1997</th>
<th>Interventions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak Epidemic Yr</td>
<td>↓ 55% fewer cases (21/100,000)</td>
<td>Directly Observed Therapy</td>
</tr>
<tr>
<td>~4,000 cases (52/100,000)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 1 in 5 TB cases were MDR | ↓ 87% less MDR | **LAB MANDATES:**
| 61% of US MDR cases | | **DAILY TB LAB RESULTS**
| | | **AFB SMEARS, ID & DRUG SUSCEPTIBILITY**
| | | |
| Decline in Public health infrastructure | Downsizing large homeless shelters | |
| | Increased number of TB clinics | |
| The Emergence of Drug-Resistant TB in NYC, T. Frieden et al NEJM 328, 1993 | DOH budget ↑ from $4 million to >$40 million | |
| Tuberculosis in NYC – Turning the Tide, T. Frieden et al NEJM 333:229, 1995 | Improved screening, isolation (e.g. prisoners) | |
TB IN THE BIG APPLE

PATIENTS

- *NYC 2012
 - 8 cases/100,000
 - ~3 x US cases
- 84% Foreign Born
 - China most common followed by Mexico
- 6% TB cases were Healthcare workers
 - Occupational exposure confirmed in 2 of 39 cases

TESTS

- Culture “Gold Standard”
 - 24% case were culture neg
- AFB Smear Results
 - Of 499 cases with pulmonary disease
 - 52% were AFB smear negative
- Drug Resistance
 - MDR (18 cases)
 - XDR (2 cases)
 - 100% ↑ over 5 yrs

*NYC DOHMH 2012 Towards Zero TB
Bureau of Tuberculosis Control Annual Summary
FAST TRACKING TB DETECTION

*NYC DOH MANDATED REPORTING

- AFB smear positives from any anatomic site
 - Do not delay AFB positive smear result pending NAATs
- Nucleic Acid Amplification Test positives
- Culture positives for MTBC
 - Initial culture is sent for DNA analysis NYCDOH
- Susceptibility test results
- Clinical suspicion of TB such that clinician initiates isolation or anti-TB Treatment
- Extrapulmonary: Biopsy, pathology tissue consistent with TB (including necrotizing granulomas)

*Reporting: Through NYS electronic reporting system within 24 hr
NYC TB CASES BY SITE 2012 (n=651)

<table>
<thead>
<tr>
<th>Pulmonary Disease Only 64%</th>
<th>Extrapulmonary Disease Only 23%</th>
<th>Both Pulmonary & Extra Pulmonary 13%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lymphatic n=93 39%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pleural n=51 22%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bone/joint n=26 11%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Meningeal n=13 6%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Genitourinary n=12 5%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Peritoneal n=10 4%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Laryngeal n=1 <1%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Other n=30 13%</td>
<td></td>
</tr>
</tbody>
</table>
FAST TURNAROUND TIME TO RESULTS CRITICAL TO RAPID DETECTION OF MTB

CULTURE RESULTS

AFB STAIN + NAAT

SAME DAY < 1 hr

> 2 to 6 wks

EARLY MTB DETECTION
THE ESSENTIAL LINK TO BREAKING THE CHAIN OF TB TRANSMISSION
Comparison of NAAT Tests

<table>
<thead>
<tr>
<th>FEATURES</th>
<th>MTD Gen-Probe</th>
<th>Xpert® MTB/RIF Cepheid</th>
</tr>
</thead>
<tbody>
<tr>
<td>TECHNOLOGY</td>
<td>Transcription Mediated Amplification</td>
<td>Nested real- time PCR</td>
</tr>
<tr>
<td>TARGET</td>
<td>16S rRNA</td>
<td>rpoB gene</td>
</tr>
<tr>
<td>AMPLICON #</td>
<td>Relative Light Units (RLU) are measureable</td>
<td>No quantitative measure</td>
</tr>
<tr>
<td>ESTIMATED</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SELF-CONTAINED</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AUTOMATION</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>INTERNAL CONTROL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DRUG RESISTANCE</td>
<td>No</td>
<td>Rifampin (marker for MDR)</td>
</tr>
</tbody>
</table>
CEPHEID
GeneXpert MTB/RIF Assay

PROS

• VERY EASY TO USE
 ✓ TEST DAILY, ALL SHIFTS
• SINGLE USE DISPOSABLE CARTRIDGES
 ✓ NO AMPLICON CONTAMINATION
• SEDIMENT & DIRECT SPECIMEN
• DETECTS MTB Complex DNA
• DETECTS RIFAMPICIN RESISTANCE by rpo GENE MUTATIONS

NEEDS IMPROVEMENT

• RIFAMPIN RESISTANCE ONLY
 ✓ INH RESISTANCE SHOULD BE DETECTED
• SHOULD DIFFERENTIATE MTB FROM M. bovis
• ASSAY SHOULD BE QUANTITATIVE
 ✓ ?ELIMINATE AFB SMEARS?
FAST TRACKING TB DIAGNOSIS
CUMC-NYPH ALGORITHM

SPECIMEN

AFB SMEAR

+ -> Xpert

- -> CONSULTATION (≥ 3 sputa)

CULTURE

SUSCEPTIBILITY

CONSULTATION (≥ 3 sputa)

INDEX OF SUSPICION FOR TB
CUMC PARADIGM
OPTIMIZING NAAT SENSITIVITY SPECIMENS

• Freeze all sediments from patients prospectively
 ✓ When NAAT is tested, we also test previously collected samples
 – Increases assay sensitivity
 – Can identify concurrent pulmonary & extrapulmonary TB infections

• Multiple pulmonary specimens per patient
 ✓ 3 sputa in one day: Decreases Turnaround Time
 ✓ Increases sensitivity of paucibacillary specimens

• MTB NAAT Tests
 ✓ AFB smear-positives: Test routinely
 ✓ AFB smear-negatives: Restricted test
 – Consult with Micro and ID or pulmonary

• Pathology routinely notifies Microbiology of specimens that are AFB positive or show necrotizing granulomas
 ✓ Was specimen sent to Micro?
 ✓ Follow up with clinicians: Educate to THINK TB
CUMC TB Dx Fast Track

- **Patients with AFB Smear +/- Culture + Specimens (2012)**
 - **TB 50%** (18 patients)
 - **MAC 15%** (259 patients)
 - **Rapid Growers 41%** (33 patients)

- Optimize use of Xpert TB NAAT

<table>
<thead>
<tr>
<th>NAAT from Specimens 2011-2012</th>
<th>AFB Smear</th>
<th>Sens %</th>
<th>Spec %</th>
<th>PPV %</th>
<th>NPV %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pulmonary N=629</td>
<td>Positive</td>
<td>99</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Negative</td>
<td>90</td>
<td>100</td>
<td>100</td>
<td>99</td>
</tr>
<tr>
<td>Extra Pulmonary N=106</td>
<td>Positive</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Negative</td>
<td>80</td>
<td>100</td>
<td>100</td>
<td>98.6</td>
</tr>
</tbody>
</table>
NAAT PERFORMANCE EXTRAPULMONARY SPECIMENS 2006-2014

<table>
<thead>
<tr>
<th>SPECIMENS</th>
<th>Tested (Culture+)</th>
<th>Xpert TB +</th>
<th>Sens %</th>
<th>Spec %</th>
<th>PPV %</th>
<th>NPV %</th>
</tr>
</thead>
<tbody>
<tr>
<td>LUNG TISSUE</td>
<td>89 (6)</td>
<td>5</td>
<td>83</td>
<td>100</td>
<td>100</td>
<td>98.8</td>
</tr>
<tr>
<td>TISSUE BX</td>
<td>97 (11)</td>
<td>9</td>
<td>81.8</td>
<td>100</td>
<td>100</td>
<td>97.7</td>
</tr>
<tr>
<td>(e.g. Bone, Pleural)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LYMPH NODE</td>
<td>42 (10)</td>
<td>6</td>
<td>60</td>
<td>100</td>
<td>100</td>
<td>88.9</td>
</tr>
<tr>
<td>WOUNDS</td>
<td>44 (9)</td>
<td>9</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>CSF</td>
<td>127 (6)</td>
<td>6</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

CSF specimens received = 2087
NAAT Poor Sensitivity

Pleural Fluids vs. Tissues

<table>
<thead>
<tr>
<th>PATIENT</th>
<th>SPECIMEN</th>
<th>MTB Culture Positive</th>
<th>NAA INHIB</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>AFB SMEAR</td>
<td>MTD *RLU</td>
</tr>
<tr>
<td>1</td>
<td>PLEURAL FLUID</td>
<td>neg</td>
<td>neg</td>
</tr>
<tr>
<td>2</td>
<td>PLEURAL FLUID</td>
<td>neg</td>
<td>neg</td>
</tr>
<tr>
<td>3</td>
<td>PLEURAL FLUID</td>
<td>neg</td>
<td>*77,295</td>
</tr>
<tr>
<td>3</td>
<td>PLEURAL TISSUE</td>
<td>neg</td>
<td>*>3 million</td>
</tr>
</tbody>
</table>

*Cut off for negative = 30,000 RLU
Cut off for positive = 500,000 RLU
EXTRAPULMONARY SPECIMENS

INTRINSIC HURDLES

- PATIENTS HAVE ATYPICAL PRESENTATIONS
 - DIAGNOSIS & TREATMENT CAN BE MISSED OR DELAYED
 - INFECTION CONTROL PRECAUTIONS DELAYED
 - ? Airborne Isolation Precautions?
 - TB exposures during diagnostic procedures (e.g. draining abscesses, operating room procedures)
- PAUCIBACILLARY SPECIMENS
 - NAAT lower Sensitivity & lower Neg Predictive Values
 - Obtaining >1 extrapulmonary specimen will increase assay sensitivity but is difficult
- NO GUIDELINES FOR NAAT USE WITH EXTRAPULMONARY SPECIMENS
- NA AMPLIFICATION INHIBITORS MORE COMMON
 - Less inhibitors in tissue specimens than body fluids

THINK BEYOND THE LUNG
NAAT EXPEDITING TB DIAGNOSIS

<table>
<thead>
<tr>
<th>Patient</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>5 yo</td>
<td>51 yo</td>
<td>48 yo HIV+</td>
</tr>
<tr>
<td>Specimen</td>
<td>Brain Bx</td>
<td>Bone Tissue</td>
<td>3 Sputa</td>
</tr>
<tr>
<td>Primary Dx</td>
<td>Metastatic tumor</td>
<td>Osteomyelitis</td>
<td>PCP pneumonia</td>
</tr>
<tr>
<td>Microbiology Tests</td>
<td>AFB Smear neg/NAAT pos (2 hours)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Culture</td>
<td></td>
<td>MTB Culture pos (21-26 days)</td>
<td></td>
</tr>
<tr>
<td>Pathology</td>
<td>Lymphs, AFB neg, granuloma</td>
<td>Necrotizing granuloma</td>
<td>N/A</td>
</tr>
<tr>
<td>Final Dx</td>
<td>Tuberculoma</td>
<td>Skeletal TB & lymphadenitis</td>
<td>Pulmonary TB</td>
</tr>
</tbody>
</table>
CUMC Isolation Practices

THINK TB

- High risk patients with pulmonary symptoms
 - Endemic areas, Prior Hx TB, HIV +, homeless, Immunosuppressed, IVDU, Prison, Organ Tx
- Patients with persistent cough, fever, unexplained weight loss, abnormal chest radiograph
- Tuberculin skin test or IGRA test positive coupled with Hx of exposure to TB or cough & fever
- Pediatric facilities: Generally young children are not considered infectious but transmission to healthcare workers during procedures causing aerosolization has been reported. (Int J Tuberc Lung Dis, 2005 9:589-692)

Promptly place suspect infectious TB pts on Airborne Isolation in a negative pressure room
CUMC Infection Control Practices

<table>
<thead>
<tr>
<th>Disease</th>
<th>Isolation Category</th>
<th>Room Required</th>
<th>Protective Equipment for Room Entry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pulmonary TB Confirmed/Suspect</td>
<td>Airborne</td>
<td>Negative Pressure</td>
<td>N-95 Mask</td>
</tr>
<tr>
<td>Extrapulmonary TB with draining lesion</td>
<td>Airborne & Contact</td>
<td>Negative Pressure</td>
<td>N-95 Mask, Gown & Gloves</td>
</tr>
<tr>
<td>Extrapulmonary TB, no drainage, no pulmonary disease</td>
<td>None</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>TB Meningitis, no pulmonary disease</td>
<td>None</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>NTM</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Impact of NAAT Results

CUMC Infection Control Practices

<table>
<thead>
<tr>
<th>NAAT POSITIVE SPECIMENS - HIGH INDEX SUSPICION</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>AFB Smear pos or AFB Smear neg</td>
<td>Remain on Airborne Isolation precautions until</td>
</tr>
<tr>
<td></td>
<td>• 2 wks Tx & clinical improvement or</td>
</tr>
<tr>
<td></td>
<td>• Discharged on DOT</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NAAT NEGATIVE SPECIMENS - LOW INDEX OF SUSPICION</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>AFB Smear pos</td>
<td>D/C Airborne Isolation if clinically cleared or has a history of NTM disease</td>
</tr>
<tr>
<td>AFB Smear neg</td>
<td>D/C Airborne Isolation if pt Dx with another disease (e.g. NTM) which responds to Tx or clinical history of NTM disease</td>
</tr>
</tbody>
</table>
What's New in Susceptibility Testing?

<table>
<thead>
<tr>
<th>METHODS</th>
<th>PRINCIPLE</th>
<th>PROS</th>
<th>CONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Molecular</td>
<td>• Detect R mutants</td>
<td>• Same Day Results</td>
<td>• Expensive</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Can Miss Strains without Target Mutation</td>
</tr>
<tr>
<td>XpertMTB/RIF</td>
<td>• Nested Real Time PCR</td>
<td>• Single Use Cartridges with</td>
<td>• Detects only Rif Resistance – Marker for MDR</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PCR</td>
<td>• INH needed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Quick & Easy</td>
<td></td>
</tr>
</tbody>
</table>
AUTGENOMICS

INFINITI MDR - RIP ASSAY

FEATURES

- Microarray Biochip technology for detection of MTB resistance to Rifampin & INH
- Rapid TB ID & susceptibility to RIP from liquid or solid culture (3 h)
- Differentiates *M. bovis* from MTBC by detecting *pncA*\(^{57}\) mutation in the PZA gene

INFINITI INSTRUMENT

- Culture Heat Killed
- PCR Amplification
- Load amplified products
- Load consumables & chips
- Line listing – presence/absence specific mutations (R) & wild type (S) sequences
- Predict S/R RIF + INH, MTB vs *M.bovis*
AUTOGENOMICS CUMC STUDY

STUDY STRAINS
- 103 CUMC MTBC ISOLATES
 - 92% MTB
 - 7% M. bovis/BCG
 - 1% M. africanum
- RESISTANCE
 - 3% Rifampin mono-resistant
 - 19% INH mono-resistant
 - 13% MDR (RIF/INH resistant)

THE RAPID INFINITI SYSTEM WAS COMPARED AGAINST 2 CURRENT GOLD STANDARDS
- PHENOTYPIC STANDARD BROTH SUSCEPTIBILITY TESTS (MGIT & BACTEC)
- SEQUENCING

THE RAPID INFINITI SYSTEM DETECTS RESISTANCE BY TARGETING SPECIFIC GENE MUTATIONS
- 7 RESISTANT MUTATIONS FOR RIFR ($rpoB$)
- 3 FOR INHR
 - 2 ($katG$) & 1 ($inhA$ promoter)
- PZAR DETECTION OF M. BOVIS ($pncA$)

THE RAPID INFINITI SYSTEM ALSO PROBES FOR WILD TYPE SEQUENCES to detect presence rare SNPs
AUTOGENOMICS RESULTS

RIFAMPIN
- **INFINITI compared to SEQUENCING rpoB**
 - ✓ 95% Sensitivity
 - ✓ 100% Specificity
 - ✓ 100% PPV
 - ✓ 99% NPV
- **INFINITI compared to PHENOTYPE**
 - ✓ 94% Sensitivity
 - ✓ 98% Specificity
 - ✓ 89% PPV
 - ✓ 99% NPV

INH
- **INFINITI compared to SEQUENCING & PHENOTYPE**
 - ✓ 95% Sensitivity
 - ✓ 100% Specificity
 - ✓ 100% PPV
 - ✓ 97% NPV

COMING ATTRACTIONS
- **MTBC ID & SUSCEPTIBILITY DIRECTLY FROM SPECIMEN**
- **NON TUBERCULOUS MYCOBACTERIA**
 - ✓ IDENTIFICATION

IDENTIFICATION
- 100% Detection of *M.bovis/BCG* by *pncA* for PZA Resistance
SAME DAY DIFFERENTIATION.... TB/NOT TB IS CRITICAL

- **CUMC:** 20% AFB SMEAR +/- NAAT NEG PULMONARY CASES ARE OFTEN MAC
 - ✓ RULE OUT TB ?
 - ✓ MAC DRUGS STARTED
- **CUMC:** 84% AFB SMEAR+/NAAT NEG IN COPD PTS MOST OFTEN INDICATE MAC DISEASE
 - ✓ IMPACTS PT TX & MANAGEMENT
 - ✓ WITH CLINICAL IMPRESSION CAN R/O TB
- RAPID DX & START OF APPROPRIATE THERAPY
 - ✓ TB, MAC OTHER NTM
- PT MANAGEMENT
 - ✓ HOSPITALIZATION? DISCHARGE? ISOLATION PRECAUTIONS?
- NO TEST IS 100%
 - ✓ “TB OR NOT TB” IS A CLINICAL CALL
NonTuberculous Mycobacteria

CLINICAL SIGNIFICANCE

- **SKIN & SOFT-TISSUE INFECTIONS**
 - Multiple Nodular Lesions
- **PULMONARY INFECTION**
 - Unilateral Noncavitary Lesion
- **ENDOCARDITIS - 9% MORTALITY**
- **FOREIGN MATERIAL**
 - Prosthetic Devices
- **POSTSURGICAL SITES**
 - e.g. sternal wounds

- NTM ARE NOT “ATYPICAL MYCOBACTERIA”!
- DISEASE, COLONIZATION, CONTAMINATION?

American Thoracic Society RECOMMENDATIONS FOR CLINICAL SIGNIFICANCE

- 3 CULTURE +/- AFB +/-
- 2 CULTURE +/- 1 AFB SMEAR +
- 1 BAL CULTURE +/- AFB SMEAR ≥ 2+
- ISOLATION FROM STERILE BODY SITE

THERE ARE NO NAATs FOR NTM IDENTIFICATION
MYCOBACTERIA

MTB complex (MTBC)
- *M. tuberculosis*
- *M. bovis, M. bovis BCG*
- *M. africanum, M. microti*
- *M. canettii*

Non Tuberculous Mycobacteria (NTM)
- *M. avium Complex (MAC)*
 - *M. avium*
 - *M. intracellulare*
- **Slow Growers**
 - *M. kansasii*
 - *M. xenopi*

RAPID GROWERS
- Grows 1 to 2 wks
CUMC FACTS & FIGURES

PTS WITH POSITIVE CULTURES

<table>
<thead>
<tr>
<th>YEARS</th>
<th>MTBC % (n)</th>
<th>MAC % (n)</th>
<th>RAPIDS % (n)</th>
<th>OTHERS % (n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007</td>
<td>11 (36)</td>
<td>68 (227)</td>
<td>10 (34)</td>
<td>11 (36)</td>
</tr>
<tr>
<td>2008</td>
<td>5 (21)</td>
<td>81 (314)</td>
<td>12 (47)</td>
<td>2 (6)</td>
</tr>
<tr>
<td>2009</td>
<td>5 (17)</td>
<td>78 (278)</td>
<td>10 (37)</td>
<td>7 (25)</td>
</tr>
<tr>
<td>2010</td>
<td>5 (19)</td>
<td>76 (312)</td>
<td>9 (36)</td>
<td>10 (42)</td>
</tr>
<tr>
<td>2011</td>
<td>6 (16)</td>
<td>81 (210)</td>
<td>6 (17)</td>
<td>6 (17)</td>
</tr>
<tr>
<td>2012</td>
<td>6 (18)</td>
<td>77 (259)</td>
<td>10 (33)</td>
<td>9 (32)</td>
</tr>
<tr>
<td>2013</td>
<td>4 (11)</td>
<td>80 (247)</td>
<td>13 (39)</td>
<td>4 (12)</td>
</tr>
</tbody>
</table>
COMMON CLINICALLY IMPORTANT NTM

- **MAC DISEASE**
 - HOT TUB SYNDROME (SPAS)
 - COPD
 - NODULAR BRONCHIECTASIS
 - DISSEMINATED DISEASE

- **RAPID GROWING MYCOBACTERIA (RGM)**
 - *M. abscessus, M. chelonae, M. fortuitum*
 - SKIN & SOFT TISSUE INFECTIONS
 - STERNAL WOUND INFECTIONS
 - Cystic Fibrosis pts, PROSTHETIC VALVES
 - COSMETIC SURGERY (DR)
 - “LIPOTOURISM”
2013 ALERT # 38

Outbreak on East Coast of Rapidly-growing Mycobacterium Infections following Cosmetic Surgery Performed in the Dominican Republic

One Case Reported in New York City

- An outbreak of *Mycobacterium abscessus* and *chelonae* infections associated with cosmetic surgery performed in the Dominican Republic has been identified, including one case in New York City and seven in other states.
- Please report to the Health Department any suspect cases of nontuberculous *Mycobacterium* skin and soft tissue infections in patients who report recent cosmetic procedures in the Dominican Republic.
<table>
<thead>
<tr>
<th>YEAR</th>
<th>#CASES</th>
<th>BODY SITE</th>
<th>NTM SPECIES</th>
<th>COUNTRY</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>2</td>
<td>Breast, Buttocks</td>
<td>M. fortuitum</td>
<td>Unknown</td>
</tr>
<tr>
<td>2002</td>
<td>1</td>
<td>Breast</td>
<td>M. abscessus</td>
<td></td>
</tr>
<tr>
<td>2003</td>
<td>1</td>
<td>Buttocks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>8</td>
<td>Abdomen</td>
<td>1- M. fortuitum 7- M. abscessus</td>
<td>Dominican Republic (DR): Clinic in Santo Domingo</td>
</tr>
<tr>
<td>2006</td>
<td>1</td>
<td>Abdomen</td>
<td>M. fortuitum</td>
<td></td>
</tr>
<tr>
<td>2007</td>
<td>1</td>
<td>Buttocks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2009</td>
<td>1</td>
<td>Buttocks</td>
<td>M. abscessus</td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td>1</td>
<td>Abdomen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2011</td>
<td>1</td>
<td>Breast</td>
<td>M. fortuitum</td>
<td></td>
</tr>
<tr>
<td>2013</td>
<td>4</td>
<td>Breast, buttocks</td>
<td>M. abscessus</td>
<td>Brazil</td>
</tr>
<tr>
<td>2014</td>
<td>4</td>
<td>Breast, Abdomen</td>
<td></td>
<td>DR</td>
</tr>
</tbody>
</table>

* Subspecies *bolletii*
MOLECULAR RGM IDENTIFICATION

• Gene Sequencing
 ✓ 16S is no longer adequate
 ✓ Cannot differentiate subspecies within M. abscessus complex
 ✓ rpoB gene
 ✓ hsp65 needed

• Phenotypic Identification Insufficient
 – Time to identification > 1 week
 – Often inaccurate

RAPID IDENTIFICATION FROM CULTURE
Critical to appropriate administration of appropriate empirical antibiotics
IDEAL TEST TO FAST TRACK Dx & DETECT MTB

- BY-PASS NALC-NaOH DIGESTION & DECONTAMINATION
- ELIMINATE AFB SMEARS
 - QUANTITATIVE ASSAY
- MOLECULAR DETECTION RESISTANCE TO RIPE
- ULTRA SENSITIVE: PAUCIBACILLARY SPECIMENS
 - DETECTION IN SALIVA OR URINE
 - AVOID INVASIVE SPECIMENS
 - EXTRAPULMONARY SPECIMENS
 (body fluids, paraffin blocks)
- DISTINGUISH Viable FROM NON-VIABLE CELLS
 - GUIDE AIRBORNE PRECAUTIONS
 - MEASURE OF RESPONSE TO TB THERAPY

FOLLOW THE HELICAL ROAD TO THE FUTURE

High Sensitivity Rapid Dx, Rapid Dx
NAAT (Xpert) ALGORITHMS

• DISCONTINUE AFB SMEARS…..PROBLEMS
 ✓ Smear data improves NAAT interpretation/accuracy
 ✓ Smear positive specimens = quality specimen
 ✓ Smear conversion from positive to neg: Measures response to therapy

• 1-2 NEGATIVE NAAT (NO AFB SMEAR) vs 2-3 AFB SMEAR NEGATIVE SPECIMENS TO DISCONTINUE AIRBORNE ISOLATION….PROBLEMS
 ✓ Poor specimen Quality/Quantity = false negative results & false negative cultures
 ✓ Both NAAT and Smear optimize Infection Control decisions and diagnosis

• 1-2 AFB SMEAR POS SPECIMENS, NOT 3 SPECIMENS (WHO) RECOMMENDED

MUCHAS GRACIAS
Valencia

THANK YOU
New York City