A Novel Epigenetic Mark, Histone H1 Fucosylation, Regulates Macrophage Plasticity in Rheumatoid Arthritis

Jun Li, MD, Ph.D
Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham

7-28-2014
Part I:
Fucosylation Is a Hallmark of Inflammatory Macrophages and Novel Therapeutic Target for Rheumatoid Arthritis
Fucosyltransferases (Futs)

- Fucosylation is the addition of a fucose residue to O-glycans, N-glycans, and glycolipids.
- Fucosylation is one of the most important glycosylation processes and altered fucosylation is involved in regulation of cancer cell death. However, the role of fucosylation in RA has not been extensively studied.

• Fucosylation is the addition of a fucose residue to O-glycans, N-glycans, and glycolipids.
• Fucosylation is one of the most important glycosylation processes and altered fucosylation is involved in regulation of cancer cell death. However, the role of fucosylation in RA has not been extensively studied.

Adapted from Bing Ma, Joanne L. Simala-Grant, and Diane E. Taylor, 2006

Asn, asparagine; Gal, galactose; GalNAc, N-acetylgalactosamine; GlcNAc, N-acetylglucosamine; Man, mannose; Neu5Ac, sialic acid; Ser, serine; Thr, threonine.
Terminal, sub-terminal fucosylation might play a role in RA pathogenesis.

Expression is represented as: (copy number/Gapdh) x 10^5
Macrophage Development and Polarization

David M. Mosser and Justin P. Edwards, 2008
Macrophage Heterogeneity in Rheumatoid Arthritis

Current therapeutic targets related to macrophages

Inflammatory
- Anti-GM-CSF
- GM-CSF
- LPS
- IFN-γ
- TNF-α
- Anti-TNF-α

Anti-Inflammatory
- Tofacitinib
- M-CSF
- IL-4
- IL-13
- IL-10
- Anti-M-CSF

Futs
- Tyrosine kinase
- JAK
- Tyrosine phosphatase

Blocker
- TRA-8
- DR5 Fas
- TLR2,4
- RANKL

Fut inhibitors
- CD200-Fc

Adapted from J. Li, et al 2012
Terminal and Sub-terminal *Futs* Are Mainly Expressed in M1 Macrophages Isolated from Human RA Synovial Fluid and Tissues

Expression is represented as:

Th1: CD4+ CD45RA− CCR2+ CCR5− or CD4+ CXCR3− CCR6

Th17: CD4+ CD45RA− CCR2+ CCR5− or CD4+ CXCR3− CCR4+ CCR6+ CD161+

Fibroblasts were isolated from synovial tissues or fragment; all other cells were sorted from synovial fluid.
Correlation between FUTs and TNF in RA/OA Synovial Tissues

A

\[\alpha(1,2)-\text{Terminal} \]

\[\alpha(1,3/4)-\text{Sub-terminal} \]

\[\alpha(1,6)-\text{Core} \]

\[\text{O-fucosylation} \]

B

\[\alpha(1,2)-\text{Terminal} \]

\[\alpha(1,3/4)-\text{Sub-terminal} \]

\[\alpha(1,6)-\text{Core} \]

\[\text{O-fucosylation} \]
Expression of Futs from Human RA Synovial Cells

Key Findings

1. Expression of most *Futs* (terminal, sub-terminal fucosylation) is highly correlated with *Tnfa*, whereas that of the other *Futs* (core and o-fucosylation) doesn’t correlate with *Tnfa*.

2. Those *Futs* that are correlated with *Tnfa* are restricted in M1 inflammatory macrophages from human RA synovial cells.

3. *Fut* expression is upregulated in the process of macrophage differentiation (>10 fold increase from monocytes to macrophages).
2-D-gal is a Terminal Fut Inhibitor

Fucosylation Pathways

Fucosylation Inhibitor

E. Miyoshi et al. J.Biochem, 143, 725-729
Murrey HE, Hsieh-Wilson LC, PNAS 2006
2-D-gal Inhibited Collagen II-induced Arthritis

2-D-gal (200 mg/kg), fucose: 2 times/week. I.P.

* p<0.01
2-D-gal Inhibited Autoantibodies and Inflammatory Cytokines Production in CIA

* \(P < 0.01 \)
2-D-gal Reduced Inflammatory Macrophages and CD4 T cells in CIA

A

B

C

D

* P < 0.01
2-D-gal Selectively Precludes M1 macrophage Differentiation

Day 0 1 2 3 4 5 6 7

M1: GM-CSF Analysis

Control 2-D-gal (15mM) Fucose (15mM)

Mouse BM-derived M1 MΦ

Human RA Synovial M1 MΦ

Human RA Synovial Fibroblasts

Graph showing viability over time with 2-D-gal and fucose treatments.

 RAW264.7

Viability

Control 2-D-gal Fucose Glucose NaCl Glycerol

5mM 5mM 5mM 5mM 5mM 5mM 5mM

Viability

0 0.2 0.4 0.6 0.8 1 1.2 1.4

BM-M1 MΦ Human RA MΦ Human RA Fibroblasts

** *
2-D-gal Skews M1 Towards M2 Macrophages

Day 0 1 2 3 4 5 6 7

M1: GM-CSF
M2: M-CSF

Analysis

Viability

2-D-gal (mM)

0 0.01 0.1 1 5 15

M1

2-D-gal (mM) overlay

No LPS

LPS (30mins)

p-ERK1/2

IFN-γ

IL-10

pg/ml

0 200 400 600 800

0 0.01 0.1 1

2-D-gal (mM)

0 0.01 0.1 1

2-D-gal (mM)

p-ERK1/2

p-ERK1/2

68.1 ± 7.5

72.9 ± 10.2

6.7 ± 1.1

2.4 ± 0.3
1. Fucosylation is a hallmark of inflammatory macrophages;

2. Fucosylation inhibitor, 2-D-Gal, prevents the M1 inflammatory macrophage differentiation and skews M1 to M2 macrophages;

3. Fucosylation inhibitor, 2-D-Gal, precludes the development of arthritis in DBA/1J mice whereas fucose facilitates it;

4. In CIA mice, 2-D-gal reduced the inflammatory macrophages and pathogenic CD4 T cells (including IL-17^+, IFN-γ^+ CD4 T cells); it also reduces autoantibody production.

QUESTION:
How does fucosylation regulate macrophage differentiation and polarization?

Adapted from Qiagen
Part II: A Novel Epigenetic Mark, Histone H1 Fucosylation, Orchestrates Macrophage Differentiation and Plasticity By Remodeling the Enhancer Landscape in Rheumatoid Arthritis

Unpublished data (slides 18-26), only available at the conference.
Acknowledgement

University of Alabama at Birmingham
Mountz, John M.D., Ph.D. and lab members
Hsu, Hui-Chen Ph.D. and lab members
Giles, Keith Ph.D.
Bridges, S. Louis, Jr., M.D., Ph.D.
Kimberly, Robert P., M.D.
Spalding, David M., M.D.
Mobley, James Ph.D.

University of Georgia, CCRC
Azadi, Parastoo Ph.D.
Ishihara, Mayumi