Addiction Therapy-2014
Chicago, USA
August 4 - 6, 2014

Marcelo Febo
3,4-Methylenedioxypyrovalerone (MDPV), a major bath salt drug, reduces functional connectivity in rat brain.

Marcelo Febo, Ph.D.
Assistant Professor of Psychiatry
Translational Research Imaging Laboratory
McKnight Brain Institute, University of Florida, Gainesville
Reports: Miami 'zombie' attacker may have been using 'bath salts'

The Drug That Never Lets Go

By Jonny Marder
Timeline of Bath Salt Effects on Behavior

- **Pleasure**
- **Empathy**
- **Sociable**
- **Crash:** Depressed mood, Anxiety/panic, Delirium/Paranoia, Hallucinations, Suicidal ideation
- **Aggressive behavior**

Abnormal behavioral pattern may continue

De Felice et al, Life Sciences, 2014
EXPERIMENTAL DESIGN

- 30 rats imaged at 4.7 Tesla under a combination of medetomidine/isoflurane anesthesia (0.5%).
- MDPV doses: 0, 0.3, 1.0, 3.0 mg/kg i.p. (n = 7-8 per dose group)
 - Doses are shown to increases in vivo striatal dopamine levels and increase locomotor activity and stereotypic behaviors (Baumann et al Neuropsychopharmacology, 2012; Marusich et al Neuropharmacology, 2014).
 - Doses have been shown to potently reduce intracranial self stimulation thresholds (ICSS thresholds). These are rewarding and show potential for abuse. (Bonano et al Psychopharmacology, 2013)
- Higher doses elicit prolonged anhedonia like actions lasting over 24 hrs (Merluzzi et al Developmental Psychobiology 2014), similar to what is reported in humans.
- Resting state fMRI datasets collected 1 hr following administration:
 - Images processed for seed based fMRI using various regions to examine functional correlated regions of the brain.
 - Model free independent component analysis was also used here to explore changes in network level changes in activity.
 - Behavioral tests were also carried out to confirm the actions of MDPV.
A. Saline treated

Component 1: Retrosplenial cortex/sensory-motor regions
Component 2: Anterior cingulate/insular cortex/striatum
Component 3: Dorsal hippocampus
Component 5: Prefrontal cortex/motor cortex/ventral striatum
Component 7: Anterior cingulate/dorsal cortex of inferior colliculus
Component 10: Cingulate/motor/somatosensory cortex
Component 11: Cingulate/retrosplenium/motor/sensory

B. MDPV 0.3 mg kg⁻¹

Component 1: Motor/Somatosensory cortex
Component 3: Anterior cingulate/2nd cerebellar lobule/PAG
Component 8: Cingulate/motor/sensory cortex
Component 12: Prelimbic/orbital areas
Component 13: Retrosplenial cortex/sensory-motor Regions
Component 14: dorsal cortex of inferior colliculus
Component 15: Retrosplenial cortex/visual cortex/sensory-motor regions
B. MDPV 1.0 mg kg\(^{-1}\)
Component 1: Disrupted
Component 2: visual cortex
Component 3: Disrupted
Component 4: Disrupted
Component 5: visual cortex
Component 7: Pontine nuclei
Component 14: Disrupted

B. MDPV 3.0 mg kg\(^{-1}\)
Component 1: Somatosensory trunk region
Component 2: Disrupted
Component 4: Brainstem
Component 5: Disrupted
Component 6: Disrupted
Component 8: Pontine nuclei
Component 11: VPL thalamus/somatosensory BF cortex
SUMMARY

- Low dose MDPV causes a slight increase in functional connectivity, particularly between striatal and prefrontal areas.
- High doses of MDPV (above 1mg kg⁻¹, i.p.) cause a severe reduction in functional connectivity.
- At the highest doses tested here (3 mg kg⁻¹, i.p.) an interesting pattern emerges in which there is an increase in connectivity between regions of the prefrontal cortex and the amygdala. These animals show also very prolonged and potent stimulant actions.
Meet the eminent gathering once again at

Addiction Therapy-2015

Florida, USA
August 3 - 5, 2015

Addiction Therapy – 2015 Website:
addictiontherapy.conferenceseries.com