What Landauer Limit? Ultra-low power electronics, and the minimum energy for computation

Gregory Snider, Alexei Orlov, and Craig Lent
Department of Electrical Engineering
University of Notre Dame
Outline

• The power dilemma and resulting limits
• The Landauer Principle
• A word about state variables
• Experiments
• Possible ways forward
Moore’s Law

The number of transistors per chip doubles every 18 months.
Multi-core processors necessary to keep chips from melting
Is Heat Really a Problem?

Every Problem is an opportunity:

Applications for waste heat:

Home heating, Global warming, etc.
Power in Conventional Logic

Conventional CMOS \[P = N(\alpha CV^2 f + \text{Passive Dissipation}) \]

How to reduce power?
- Reduce V
- Reduce C
- Reduce f (multi-core)
- Turn off parts of the circuit (\(\alpha\))
- Reduce passive power
Focus on Active or Passive Power?

Passive Power seems the most threatening!

Solution: Improve the switch!

You’ve fixed Static Power issue, but not the active power!

If $E_{\text{Bit}} = 100 \ k_B T$, $f=100 \ \text{GHz}$, $N=10^{11} \ \text{cm}^{-2}$

$P = 4 \ \text{kW/cm}^2$
Fundamental limits for computation?

Is there a fundamental lower limit on energy dissipation per bit?

\emph{i.e.} is there a minimum amount of heat that must be generated to compute a bit?
Minimum energy for computation

- Maxwell’s demon (1875) – by first measuring states, could perform reversible processes to lower entropy
- Szilard (1929), Brillouin (1962): measurement causes $k_B T \ln(2)$ dissipation per bit.
- Landauer (1961, 1970): only destruction of information must cause dissipation of $k_B T \ln(2)$ per bit (Landauer’s Principle).
- Bennett (1982): full computation can be done without erasure.

logical reversibility \Leftrightarrow physical reversibility

Still somewhat controversial.
The Debate

Analysis of erasure process

Helpful to examine and contrast two cases:

• Erasure with a copy
 – Reversible logical operation (No Data Destroyed)
 – Key feature:
 The copy biases the system toward the state it’s in

• Erasure without a copy
 – Irreversible logical operation (Data Destroyed)
 – Key feature:
 The system cannot be biased toward the state it’s in, so there’s an uncontrolled step
What About State Variables?

• Does the choice of a state variable affect this analysis?

• Isn’t using charge as the state variable the real problem?

• If we use a different state variable like spin, the problem goes away, right?
A Little History

Beginning in 2003 Zhirnov, Cavin, and Hutchby from SRC have published a series of highly influential papers indicting charge as a state variable.

Their conclusions:

- At least $k_B T \ln 2$ must be dissipated at each transition
- This result was generalized to all charge-based devices

This is true for CMOS, but what about other charge-based devices?

Fig. 1. Energy model for limiting device: w = width of left-hand well (LHW) and right-hand well (RHW); a = barrier width; E = barrier energy
What About “Reversible” Computing?

Following Landauer, the idea is to avoid erasure of information.

A key technology in reversible computing is adiabatic charging and discharging of capacitors: recycle charge rather than throwing it to ground.

The SRC critique: Cavin’s Demon
Cavin’s Demon

Assertion 1. Energy must be dissipated to make logic transitions.

Energy spent by the demon must be $> k_B T \ln 2$

Problem: Since there is no input this is really just creating a bit of information.
Cavin’s Demon

Assertion 2: Charging a capacitor requires at least $k_B T \ln 2$ of energy

Figure 3: Signal forms for “non-adiabatic” and “adiabatic” charging

Figure 4: Due to the presence of thermal noise, the linear ramp is corrupted

Note 1 on adiabatic charging: The energy dissipated in RC circuit by adiabatic charging cannot be smaller than $kT \ln 2$
Cavin’s Demon

Assertion 3:

Note II on “adiabatic charging”: The total energy costs for “adiabatic charging” must include the energy dissipated by the signal generator and this is much larger than the energy dissipated in RC circuit by adiabatic charging:

\[E_{total} \gg E_{ad} \]

This is a systems level assertion that depends on the signal generator. However, signal generators can scale differently than integrated circuits!

Worst case: Signal generator more easily cooled than and IC!

Signal generator concerns apply equally to the control signals for every state variable.

SRC’s Conclusion: Charge is dead!
Is this Conclusion Correct?

Let’s find out!

\[E_C(\omega) = CV_{in}^2 \left[\frac{1}{1 + \left(\frac{\omega}{\omega_0} \right)^2} \right] \]

\[E_R(\omega) = \frac{1}{2} \frac{V_{in}^2}{R} \frac{2\pi}{\omega} \left[\frac{\left(\frac{\omega}{\omega_0} \right)^2}{1 + \left(\frac{\omega}{\omega_0} \right)^2} \right] \]

The challenge: \(k_B T \ln 2 \) at \(RT = 3 \) zJ!
Sanity Check
The Landauer Principle

LETTER

doi:10.1038/nature10872

Experimental verification of Landauer’s principle linking information and thermodynamics

Antoine Béreul, Artak Arakelyan, Artyom Petrosyan, Sergio Giliberto, Raoul Dillenschneider & Eric Lutz

Nature 483, p189, 2012
The Landauer Principle

The SRC group rejects the Landauer Principle, but can it be tested?

Room temperature operations on a $30 \ k_B T$ bit of information

Dissipation was measured as low as $0.01 \ k_B T$, confirming the Landauer Principle.

JJAP, 51, pp. 06FE10, 2012.
The Landauer Principle

Room temperature operations on a $73 \, k_B T$ bit of information

Measured dissipation was 0.005 $k_B T$ (15 yJ).
Experimental Summary
Is There Any Hope?

Yes, but transistors may not be the best way!

It is time to do something different.

Represent binary information by charge configuration!
Quantum-dot Cellular Automata

A cell with 4 dots
2 extra electrons
Tunneling between dots
Polarization $P = -1$
Bit value “0”

Developed in the early 90s by
Craig Lent
Wolfgang Porod
Gary Bernstein
Charge configuration represents bit.
Neutral mixed-valence zwitterion (self-doped)

Synthesis: John Christie, Kenneth Henderson

Imaging: Alex Kandel, Natalie Wasio, Rebecca Quardokas

Awitterionic mixed-valent nido-1,2-diferrocenyl-undecacarborane.
Conclusions

• Energy recycling can enable power reduction
• Charge is a viable state variable
• Alternative state variables face the same limits as charge
• There is no fundamental lower limit on the energy needed for computation – only practical ones
• The key is to trade speed for power, a trade-off that is already being made.
• Low energy dissipation key to implantable applications.