Design and evaluation of a novel OspA-based vaccine for the prevention of Lyme borreliosis

September 25, 2014

4th International Conference on Vaccines & Vaccination
Disclaimer
Forward Looking Statements

These materials contain certain forward-looking statements relating to the business of Valneva SE (the “Company”), including with respect to the progress, timing and completion of the Company’s research, development and clinical trials for product candidates, the Company’s ability to manufacture, market, commercialize and achieve market acceptance for product candidates, its ability to protect its intellectual property and operate its business without infringing on the intellectual property rights of others, the Company’s estimates for future performance and its estimates regarding anticipated operating losses, future revenues, capital requirements and its needs for additional financing. In addition, even if the Company’s actual results or development are consistent with the forward-looking statements contained in this presentation, those results or developments may not be indicative of the Company’s results or developments in the future. In some cases, you can identify forward-looking statements by words such as “could,” “should,” “may,” “expects,” “anticipates,” “believes,” “intends,” “estimates,” or similar words. These forward-looking statements are based largely on the Company’s current expectations as of the date of this presentation and are subject to a number of known and unknown risks and uncertainties and other factors that may cause actual results, performance or achievements to be materially different from any future results, performance or achievement expressed or implied by these forward-looking statements. In particular, the Company’s expectations could be affected by, among other things, uncertainties involved in the development and manufacture of vaccines, unexpected clinical trial results, unexpected regulatory actions or delays, competition in general, the impact of the global credit crisis, and the Company’s ability to obtain or maintain patent or other proprietary intellectual property protection. In light of these risks and uncertainties, there can be no assurance that the forward-looking statements made during this presentation will in fact be realized and no representation or warranty is given as to the completeness or accuracy of the forward-looking statements contained in these materials.

The Company is providing the information in these materials as of this date, and we disclaim any intention or obligation to publicly update or revise any forward-looking statements, whether as a result of new information, future events or otherwise.
Lyme Borreliosis (LB)
Introduction to vaccine
Biology of Borrelia

+ At least 14 species, where 3 cause the majority of clinical cases
+ Helical shape, 5-20 µm long
+ Very motile (periplasmic flagella)
+ Generation time; 12 – 24 h
+ “Gram negative-like”; No LPS, but multiple lipoproteins on surface
+ Segmented genome (B31, Bb: 1.5 Mbp)
 › 1 linear chromosome
 › 21 plasmids; 12 linear and 9 circular plasmids
+ Many genes are uncharacterized and have no homolog in other species
+ Several OspA serotypes
+ Rather low homology between species and within B. garinii
+ Only transmitted by Ixodes ticks
Introduction to vaccine
Infection cycle of Borrelia

One female tick can lay >1000 eggs

Rodents and birds are natural *Borrelia* reservoirs

Infected nymphs attack humans mainly during spring and summer
Introduction to vaccine
Epidemiology of Borrelia

<table>
<thead>
<tr>
<th>Country</th>
<th>Average annual incidence per 100,000</th>
<th>Average number of cases per year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Germany</td>
<td>25</td>
<td>20,700</td>
</tr>
<tr>
<td>Austria</td>
<td>130</td>
<td>14,000</td>
</tr>
<tr>
<td>France</td>
<td>16.5</td>
<td>10,022</td>
</tr>
<tr>
<td>Lithuania</td>
<td>25</td>
<td>8,500</td>
</tr>
<tr>
<td>Sweden (S.)</td>
<td>80</td>
<td>7,223</td>
</tr>
<tr>
<td>Netherlands</td>
<td>43</td>
<td>4,890</td>
</tr>
<tr>
<td>Latvia</td>
<td>16</td>
<td>3,680</td>
</tr>
<tr>
<td>Bulgaria</td>
<td>55</td>
<td>3,500</td>
</tr>
<tr>
<td>Slovenia</td>
<td>155</td>
<td>3,096</td>
</tr>
<tr>
<td>Czech Rep.</td>
<td>29</td>
<td>2,962</td>
</tr>
<tr>
<td>Switzerland</td>
<td>30.4</td>
<td>2,264</td>
</tr>
<tr>
<td>Poland</td>
<td>4.8</td>
<td>1,832</td>
</tr>
<tr>
<td>Slovakia</td>
<td>18.4</td>
<td>1,000</td>
</tr>
<tr>
<td>Finland</td>
<td>12.7</td>
<td>700</td>
</tr>
<tr>
<td>Estonia</td>
<td>35</td>
<td>500</td>
</tr>
<tr>
<td>U.K.</td>
<td>0.7</td>
<td>423</td>
</tr>
<tr>
<td>Norway</td>
<td>2.8</td>
<td>128</td>
</tr>
<tr>
<td>Ireland</td>
<td>0.6</td>
<td>30</td>
</tr>
<tr>
<td>Total</td>
<td>-</td>
<td>85,450</td>
</tr>
</tbody>
</table>

Estimated average annual LB incidence (over 10 years) in selected European countries (Lindgren and Jaenson, 2006). Note: Some countries do not use standardized diagnostic tests or accepted case definitions, therefore data may be subject to considerable error.
Introduction to vaccine
Distribution of OspA serotypes in clinical isolates

+ Spirochetes cultivated from clinical samples collected from LB patients
 › V. Fingerle (Munich, Germany) collection 236 strains and Baxter data from 359 isolates
+ Strains were typed by sequencing of the ospA gene
+ Invasive cases defined when strains were isolated from CSF and synovia

<table>
<thead>
<tr>
<th>Borrelia sp.</th>
<th>OspA serotype</th>
<th>Human isolates</th>
<th>Human isolates</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Total</td>
<td>Invasive</td>
</tr>
<tr>
<td>B. afzelii</td>
<td>2</td>
<td>53% (126)</td>
<td>24% (19)</td>
</tr>
<tr>
<td>B. bavariensis</td>
<td>4</td>
<td>15% (36)</td>
<td>22% (17)</td>
</tr>
<tr>
<td>B. burgdorferi</td>
<td>1</td>
<td>13% (31)</td>
<td>27% (21)</td>
</tr>
<tr>
<td>B. garinii</td>
<td>6</td>
<td>8% (19)</td>
<td>15% (12)</td>
</tr>
<tr>
<td>B. garinii</td>
<td>5</td>
<td>4% (10)</td>
<td>5% (4)</td>
</tr>
<tr>
<td>B. garinii</td>
<td>3</td>
<td>3% (8)</td>
<td>5% (4)</td>
</tr>
<tr>
<td>B. spielmanii</td>
<td>snd</td>
<td>2% (4)</td>
<td>0% (0)</td>
</tr>
<tr>
<td>B. garinii</td>
<td>7</td>
<td><1% (2)</td>
<td>1% (1)</td>
</tr>
</tbody>
</table>

Analysis of strain collection from V. Fingerle. 236 human isolates from Germany of which 78 were isolated from people with invasive disease. Number of isolates in brackets.

<table>
<thead>
<tr>
<th>Borrelia sp.</th>
<th>OspA serotype</th>
<th>Human isolates</th>
<th>Human isolates</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Total</td>
<td>Invasive</td>
</tr>
<tr>
<td>B. afzelii</td>
<td>2</td>
<td>57% (204)</td>
<td>12% (7)</td>
</tr>
<tr>
<td>B. garinii</td>
<td>6</td>
<td>16% (57)</td>
<td>38% (23)</td>
</tr>
<tr>
<td>B. burgdorferi</td>
<td>1</td>
<td>12% (42)</td>
<td>12% (7)</td>
</tr>
<tr>
<td>B. garinii</td>
<td>5</td>
<td>7% (26)</td>
<td>15% (9)</td>
</tr>
<tr>
<td>B. bavariensis</td>
<td>4</td>
<td>4% (16)</td>
<td>12% (7)</td>
</tr>
<tr>
<td>B. garinii</td>
<td>3</td>
<td>2% (7)</td>
<td>9% (5)</td>
</tr>
<tr>
<td>B. spielmanii</td>
<td>snd</td>
<td>1% (4)</td>
<td>0% (0)</td>
</tr>
<tr>
<td>B. garinii</td>
<td>7</td>
<td><1% (3)</td>
<td>3% (2)</td>
</tr>
</tbody>
</table>

BAXTER analysis of 359 human isolates from 16 European countries of which 60 were isolated from people with invasive disease. Number of isolates in brackets.

+ B. afzelii most common isolate in both strain collections
+ Variation between strain collections in OspA serotypes involved in invasive disease

Snd – OspA serotype not defined
+ **Only OspA serotype 1 present in US: Borrelia burgdorferi**
 - Between 2001 and 2011 the number of reported cases went from 17,029 to 24,364, making LB the sixth most common reportable disease in the US
 - In endemic areas 2nd (New England) and 3rd (Mid Atlantic states) most common
 - These numbers are an underestimate, as preliminary results from CDC indicate that over 300,000 Americans are diagnosed with LB each year (makes LB third most common reportable disease in the US after Chlamydia and Gonorrhea)
Introduction to vaccine

Clinical manifestations of LB

+ Localized infection
 - Skin: Erythema migrans (~80% of infections)

+ Disseminated infection
 - Joints: Lyme arthritis (*B. burgdorferi*)
 - CNS: Neuroborreliosis (*B. garinii* and *B. bavariensis*)
 - Skin: Acrodermatitis chronica atrophicans (*B. afzelii*)

Lyme arthritis

Facial nerve palsy

Acrodermatitis chronica atrophicans
Lyme Borreliosis vaccine
Introduction to vaccine
Mechanism of action of an OspA based vaccine

+ Expression of OspA
 1. OspA is expressed when spirochetes are located in the mid-gut of an unfed tick
 2. During feeding, the incoming blood elicits the down regulation of OspA expression
 3. Down regulation of OspA allows the spirochetes to migrate to the salivary glands and into the blood of the vertebrate host

+ Function of anti-OspA antibodies
 1. The anti-OspA antibodies in the blood of the host bind to the spirochetes before OspA expression is down regulated
 2. Migration to the salivary glands is blocked and borreliae are killed in a complement independent manner* in the tick
 3. Thus, only antibodies that bind OspA are needed for elimination of spirochetes in the tick

* Valenzuela et al., JMB 2000, Rathinavelu et al., Inf. Imm. 2003, Gipson et al., Inf. Imm. 2005
The OspA strategy
Learnings from other studies

+ *B. afzelii* (OspA-ST2) is the most common cause of LB in Europe
+ Pronounced cross-protection is not expected due to sequence variation among the OspA serotypes
+ Crystal structure of OspA *B. burgdorferi* (OspA-ST1) has been determined*
+ Anti-OspA antibodies block the transmission of spirochetes from ticks to the vertebrate host
+ Studies have claimed that epitope LA-2 (OspA-ST1) correlates with protective immunity after vaccination**
+ The C-terminal part of OspA (aa131-273) from *B. burgdorferi* (ST1) is protective in mice, but not structurally stable. Point mutations facilitating formation of hydrophobic interactions restore stability and vaccine efficacy***

+ Focus on C-terminal region of OspA

The OspA strategy

Stabilizing mutations for C-terminal OspA

- Disulfide bonds introduced by point mutations
 - Distance (Å) based on crystal structures (OspA-ST1) with monoclonal antibodies 184.1 and LA-2
 - Five prioritized stabilized variants of truncated OspA
 - The final disulfide bond is about 2.1 Å in length

<table>
<thead>
<tr>
<th>#</th>
<th>Position (aa)</th>
<th>Distance (184.1 or LA-2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>141,241*</td>
<td>6.0 Å or 6.2 Å</td>
</tr>
<tr>
<td>D</td>
<td>165,265**</td>
<td>4.0 Å or 4.2 Å</td>
</tr>
<tr>
<td>B</td>
<td>182,269**</td>
<td>4.2 Å or 4.1 Å</td>
</tr>
<tr>
<td>E</td>
<td>182,272**</td>
<td>3.0 Å or 3.9 Å</td>
</tr>
<tr>
<td>C</td>
<td>244,259**</td>
<td>4.0 Å or 4.1 Å</td>
</tr>
</tbody>
</table>

* Proposed by ICLL Bioinformatician, ** Proposed by MODIP (distance and direction/orientation taken into account)
The OspA strategy
Stabilized truncated monomers linked to heterodimers

+ **VLA15-combo**: Lip-D1B2B, Lip-D4Bva3B and Lip-D5B6B
 - Truncated stabilized OspA from 6 different serotypes linked to form 3 heterodimers
 - Lipidation sequence ensures high immunogenicity (*E. coli*, Lpp (major OMP))
 - Monomers linked with a 21 amino acid linker derived from two N-terminal loops of *B. burgdorferi* OspA-ST1 (aa 65-74, aa 42-53)
Influence of lipidation on immunogenicity
Assessment of monomers by ELISA

+ Lipidated and non-lipidated OspA monomer ST2 formulated with adjuvant
+ Mice were immunized three times with two weeks interval
+ Dose: 5.0 µg non-lipidated and 2.5 µg lipidated OspA monomer
+ Final bleed was performed one week after the third immunization
+ Sera were analyzed by ELISA with the homologous protein as coating antigen

+ Lipid moiety increases immunogenicity at least 10-fold

GMT – geometric mean titer
Effect of adjuvant on immunogenicity
Assessment of heterodimers by ELISA

+ Lipidated OspA heterodimers were formulated with or without 0.15% aluminum hydroxide
+ Mice were immunized three times with two weeks interval with five different doses of heterodimer (5.0, 1.5, 0.5, 0.15 and 0.05 µg)
+ Final bleed was performed one week after the third immunization
+ Sera were analyzed by ELISA with the homologous antigen as coating antigen

+ Adjuvanted heterodimer gives approximately 100-fold higher immune response

GMT – geometric mean titer, CI – confidence interval
Comparison of Borrelia vaccine antigens
Rationale for increased immune response

+ **VLA15-combo**
 - Similar dose of VLA15 contains almost 2x the amount of C-terminal region of OspA (aa 126 - 273) than Baxter OspA
+ Comparison does not calculate for cross-reactivities between serotypes
The immune responses of VLA15-combo as measured by ELISA for all serotypes are non-inferior or superior to Baxter-like vaccine.

GMT – geometric mean titer, CI – confidence interval, LL – lower limit, UL – upper limit
Mouse challenge models
Layout and readout of the two challenge models

MOUSE TICK CHALLENGE MODEL

1. s.c. immunize C3H/HeN mice
2. collect immune sera
3. Application of infected ticks
4. collect final sera and organs

MOUSE NEEDLE CHALLENGE MODEL

1. s.c. immunize C3H/HeN mice
2. collect immune sera
3. collect final sera and organs

+ Mice are challenged with ticks feeding for 3-5 days
+ Mice are sacrificed 6 weeks after tick application
+ Readout based on VlsE ELISA and qPCR

+ Mice are challenged with in vitro grown bacteria
+ Mice are sacrificed 4 weeks after challenge
+ Readout based on VlsE ELISA and qPCR

VlsE: Variable major protein [VMP]-like sequence E
Mouse tick challenge model
Application of ticks

1. The hair of the back is removed with epilation cream
2. Ventilated containers are glued to the naked skin with super glue
3. 1-2 ticks infected with *B. afzelii* (OspA-ST2) are put in each container
4. The feeding is monitored for 5 days and non-feeding ticks are replaced
5. Only mice with at least 1 fully fed tick are included in the final readout

Pictures above illustrate the feeding progress on different mice
Protection by VLA15-combo
Active immunization and tick challenge: B. afzelii (ST2)

+ Three immunizations with two weeks interval, adjuvant 0.15% Al(OH)$_3$
 › Controls: Lip-OspA2-His, Baxter combo
+ Tick challenge: Nymphs infected with B. afzelii (ST2) strain IS1 two weeks after third immunization
+ Final bleed and organ collection four weeks after challenge
 › Infection read-out: VlsE ELISA and qPCR

<table>
<thead>
<tr>
<th>Immunogen</th>
<th>Dose</th>
<th>Infected/Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Experiment 1</td>
</tr>
<tr>
<td>Lip-OspA2-His</td>
<td>1 µg</td>
<td>0/8**</td>
</tr>
<tr>
<td>Baxter-combo</td>
<td>3 µg</td>
<td>0/7**</td>
</tr>
<tr>
<td>VLA15-combo</td>
<td>3 µg</td>
<td>0/9***</td>
</tr>
<tr>
<td>Placebo</td>
<td>-</td>
<td>5/5</td>
</tr>
</tbody>
</table>

All vaccines resulted in significant protection in three separate experiments

Only mice with at least one fully fed tick were included in the readout

P-values were calculated with Fisher’s exact test (two tailed); * <0.05, ** <0.01, *** <0.001 and ns not significant
Protection by VLA15-combo
Active immunization and tick challenge: B. burgdorferi (ST1)

- Three immunizations with two weeks interval, adjuvant 0.15% Al(OH)$_3$
 - Controls: Lip-OspA1-His, Baxter-combo
- Tick challenge: Nymphs infected with either B. burgdorferi (ST1) strain Pra1 or Pra4 two weeks after third immunization
- Final bleed and organ collection four to six weeks after challenge
 - Infection read-out: VlsE ELISA and qPCR

<table>
<thead>
<tr>
<th>Immunogen</th>
<th>Dose</th>
<th>Experiment 1 (Pra4)</th>
<th>Experiment 2 (Pra1)</th>
<th>Experiment 3 (Pra1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lip-OspA1-His</td>
<td>1 µg</td>
<td>0/4*</td>
<td>1/8$_{ns}$</td>
<td>1/9*</td>
</tr>
<tr>
<td>Baxter-combo</td>
<td>3 µg</td>
<td>0/8**</td>
<td>0/9*</td>
<td>0/7**</td>
</tr>
<tr>
<td>VLA15-combo</td>
<td>3 µg</td>
<td>0/5*</td>
<td>0/10*</td>
<td>0/7**</td>
</tr>
<tr>
<td>Placebo</td>
<td>-</td>
<td>5/6</td>
<td>4/7</td>
<td>5/6</td>
</tr>
</tbody>
</table>

+ VLA15-combo and Baxter-combo provide significant protection using ticks infected with different strains for challenge

Only mice with at least two fully or almost fully (≥48 hours) fed ticks were included in the readout, P-values were calculated with Fisher’s exact test (two tailed); * <0.05, ** <0.01, *** <0.001 and ns not significant
Status of Borrelia animal model

OspA serotype specific mouse challenge models

<table>
<thead>
<tr>
<th>Serotype</th>
<th>Challenge model (strain)</th>
<th>Statistical significant protection*</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Needle (ZS7)</td>
<td>0.001, <0.001, <0.001</td>
</tr>
<tr>
<td></td>
<td>Tick (Pra1)</td>
<td>0.048, 0.187, 0.022</td>
</tr>
<tr>
<td>2</td>
<td>Tick (IS1)</td>
<td>0.002, <0.001, 0.003</td>
</tr>
<tr>
<td>5</td>
<td>Needle (Phei)</td>
<td><0.001, <0.001, <0.001</td>
</tr>
<tr>
<td>6</td>
<td>Needle (Ma)</td>
<td>0.011, 0.488, 0.033</td>
</tr>
</tbody>
</table>

- Challenge experiments have been performed two or three times, further experiments with additional doses
- Significant protection seen in all five tick or needle challenge models

* Three independent experiments, Protection compared to the placebo group, Fisher exact test, two-tailed
Pre-clinical data for all six OspA serotypes

In vivo protection & in vitro assays

+ Mice were immunized three times (s.c.) with two weeks interval (1 µg/protein)
 › Sera analyzed one week after third immunization for growth inhibition & surface binding
 › Mice challenged two weeks after third immunization and analyzed for infection 4 (needle challenge) or 6 weeks (tick challenge) later by VlsE ELISA and qPCR
Clinical development of LB vaccine
Draft clinical development strategy

OBJECTIVES
» Safety
» Immunogenicity
» Dose, Formulation, Schedule
» Antibody persistence & Booster

PHASE I/II
Healthy adults

PHASE III
Healthy adults
Pivotal Safety and Efficacy Study
» Placebo-controlled

PHASE II
Pediatric
» Safety, immunogenicity
» Dose, schedule

PHASE III
Pediatric
» Safety
» Immunogenicity & efficacy

Concomitant Vaccination studies
» Safety, immunogenicity (non-interference)

25SEPTEMBER 25, 2014
VLA15 – Summary

+ Protein-based vaccine protective against the 6 major OspA serotype Borrelia species causing disease in EU & US
+ Pre-clinical protection shown in 5 different animal models (4 OspA serotypes)
+ VLA15 drug substance of excellent quality produced in E. coli in scalable fermentation process (fed-batch) in defined synthetic medium, yielding app. 1.2 g/L of mature lipoprotein
+ Semi-generic, scalable production process for all 3 proteins, resulting in high purity and low amount of residual impurities
+ Project ready to move into clinical testing within 12-15 months
VLA15 – Acknowledgements

+ Pre-clinical Research at Valneva: Urban Lundberg, Pär Comstedt, Wolfgang Schüler, Robert Schlegl, Markus Hanner, Sandra Jost, Ana Kremers, Christina Satke and many others

+ Collaborators: Sven Bergström, Hans Dautel, Volker Fingerle
Merci
Danke
Thank you