S. pyogenes candidate vaccine

Luiza Guilherme, PhD
Heart Institute (InCor)
University of São Paulo, São Paulo, Brazil
luizagui@usp.br
RF and RHD

Streptococcus pyogenes

- Polyarthritis (90%)
- Subcutaneous Nodules
- Eritema marginatum
- Carditis (30-45%)

Auto-immune Reactions

(3 a 4%)

1840: “Rheumatic fever licks the articulations and bits the heart.” (Jean Baptiste Bouillot)

Reviewed by Steer et al, 2007

(Decourt, 1972); (Kaplan, 1979)
Pattern of Valvular Lesions of Rheumatic Fever/Rheumatic Heart Disease Patients Based on Cardiology Auscultation

311 out of 439 patients
63.6%
<table>
<thead>
<tr>
<th></th>
<th>Number - Patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rheumatic Fever Surgeries</td>
<td></td>
</tr>
<tr>
<td>Valvar Replacement</td>
<td>3873</td>
</tr>
<tr>
<td>Valvar Plastic</td>
<td>1131</td>
</tr>
<tr>
<td>Total</td>
<td>5004</td>
</tr>
</tbody>
</table>

49.5 % of cardiac surgeries performed in 25 years

Pomerantzeff PMA, Brandao CM, et al. Valve Reconstruction in the Heart Institute of São Paulo, Brazil.; Semin Thorac Cardiovasc Surg, 2002
Medical Care

• Ambulatory

 2014

 – Following-up: approximately 12000 patients;

 – Average monthly attendance: 1600 patients;

May/2015:

 • New cases of VHD: 81 patients

 • Total: 1604 patients
Medical Care - Teaching

- 28 bed ward for valvular heart disease;
- **In 2014:** 615 surgeries (25% of all surgeries);
- **May 2015:** 57 valvular heart surgeries (20% of all surgeries);
Latin American / European / North American guidelines have a few differences and a lot of similarities:

• What is the Latin America (Brazilian) reality?
 – Higher prevalence of *rheumatic fever* (up to 70% of all surgical cases of valvular disease).
 – Incidence of rheumatic heart disease at school age is: 1 to 7/1000 children in Brazil versus 0.1 to 0.4/1000 in the USA.
 – Higher incidence of valvular disease in young people.

• What are the European and USA realities?
 – Higher prevalence of *degenerative valve disease* (aortic stenosis and mitral regurgitation)
| • ~ 600 outpatients / month |
| • ~ 2000 patients waiting for valvular surgery |
| • 38% of surgeries are in young patients |
HLA – Class II alleles
Serology, Mol Biol

MBL-2- Alleles A / O
TLR-2
FCN-2
FcRII A

Genetic Susceptibility

Adaptive IR

Cytokines
TNF- alfa
TGF-beta
IL-1 Ra
IL-10

Innate IR
SNP
RHD- Autoimmune Reactions: Peripheral T-cells and M protein Response

Throat

A - Periphery

- Macrophage
- peptide
- HLA DR/DQ
- CD4+T Cell
- Citokines
- B Cell
- Antibodies anti-streptococci
- Streptococci primed CD4+ T Cell

Responders to M5(81-96) peptide

- % Responders
- HLA class II

<table>
<thead>
<tr>
<th></th>
<th>DR7+</th>
<th>DR7-</th>
<th>DR53+</th>
<th>DR53-</th>
</tr>
</thead>
<tbody>
<tr>
<td>Severe RHD</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mild RHD</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Controls</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- 70% of RHD patients recognized Heart-tissue proteins

Rheumatic Valvulitis – Mitral v.

Vegetations

Valve Cross Reactive Proteins
Vimentin, Collagen VI, Lumican

Guilherme, L et al,

Martins C, Guilherme, L et al, 2014

Intralesional Auto-reactive T cell clones
Acute Phase – 67%
Chronic Phase – 20 to 30%

Vegetations

Acute Phase – 67%
Chronic Phase – 20 to 30%
Cytokines in RHD

Th1

Inflammatory
- TNFa, IFNg
- IL-17, IL-23

Regulatory
- IL-10
- IL-4 – Low numbers

- Progression of RHD lesions
- Permanent valvular damage

* P < 0.02; O.R. = 15.8

Streptococcus pyogenes

More than 200 strains

(Fischetti et al., 1991)

(Smeesters, et al., 2010)
Vaccine Development
M protein- C-terminal Region: T and B Epitopes

Identical Region

253 KGLRRDLDSREAKKQLEAEQQ
288 EASR KGLRRDLDSREAKKQVEKA

T epitope

B epitope

PepVac/Rec.Prot – StreptInCor 55 aa

253 KGLRRDLDSREAKKQLEAEQQKLEEQNKISEASRKGLRRDLDSREAKKQVEKA

Sequence data bank
PDB ID 2KK9
RCSB 101224

Patents
INPI, BR – 0501290 / 0604997-4,
International: China, Korea, Japan, USA

Therapeutic Effect: USA

Guilherme L, Kalil, J et al, Clin Dev Immunol, 2006, Methods, 2009,
J Biol Chem, 2011
HLA Class II – Binding Prediction

Afinity

P1 - L, I
P4 - D, S, E, A, Q, N
P6 - D, E, Q, R,
P9 - R, K, E, L,

Binding Prediction

Pept.	HLA-II
A | DR-03, DR52
B | DR-04, DR-04
C | DR-04, DR-53
D | DR-06, 07, DR-52, 53
E | DR02, 05, DR-51, 52

Class II MHC
Human Humoral and Cellular Reactivity

Experimental Assays

• Mice (Balb-C, C57BL6, Swiss, HLA-class II transgenic mice)

• Mini pigs (25-30Kg)
StreptInCor induces high and specific IgG antibodies.
No crossreactivity against cardiac myosin was observed.

Postol E, Guilherme L, Plos One, 2013
Survival after emm1 *S. pyogenes* challenge

- Immunized mice: 87%
- Controls: 53%

p = 0.05

Postol E, Guilherme L, Plos One, 2013/ 2014
Adhesion/Invasion Inhibition – Hep-2 cells

Adhesion - *S. pyogenes*

Sera from StreptInCor immunized mice

S. pyogenes – M1 Adhesion/Invasion Inhibition

- BALB/c (N=5)
 95.0 %
- C57BL6 (N=7)
 92.0 %
- Swiss (N=3)
 98.5 %

UFC without sera > 200,000
Anti-StreptInCor antibodies induce Neutralization of several *S. pyogenes* strains

De Amicis MK, Guilherme L, Vaccine, 2013/2014
Anti-StreptInCor antibodies induce opsonophagocytose and *S. pyogenes* death

De Amicis MK, Guilherme L, Vaccine, 2013/14
Opsonization, phagocytose/death of M1 induced by anti-StreptInCor antibodies

Pré-immune sera

Hiperimmune sera

S.pyogenes

Phagocytosis of S.pyogenes by APC

De Amicis MK, Guilherme L, Vaccine, 2013/14
HLA Class II Tg Mice Model

• DRB1 (DR2, DR4)

• DQ6 and DQ8

Prof Chella David, Clinic Mayo, USA
HLA class II Tg Mice
StreptInCor antibodies recognize heterologous protein without crossreactivity against cardiac myosin

Guerino, T; Guilherme L, Vaccine, 2011
HLA-Class II - Transgenic mice: StreptInCor + ALUM

Guerino, T Guilherme et al, Vaccine, 2011
<table>
<thead>
<tr>
<th>Overlapping Peptides Sequences (20 aa residues)</th>
<th>Transgenic Mice Bearing HLA Class II Alleles</th>
<th>Humoral Immune Response (IgG)</th>
</tr>
</thead>
<tbody>
<tr>
<td>KGLRRDLDAWAREKQEKL</td>
<td>DR2</td>
<td>6+/6</td>
</tr>
<tr>
<td>KGLRRDLDAWAREKQEKL</td>
<td>DR2</td>
<td>5+/6</td>
</tr>
<tr>
<td>GLRRDLDAWAREKQEKL</td>
<td>DR2</td>
<td>5+/6</td>
</tr>
<tr>
<td>LDASBEAKQLEAEQQKLE</td>
<td>DR2</td>
<td>4+/6</td>
</tr>
<tr>
<td>KLEQNKISEASRKGLRDL</td>
<td>DR2</td>
<td>5+/6</td>
</tr>
<tr>
<td>KISEASRKGLRDLASFRE</td>
<td>DR2</td>
<td>5+/6</td>
</tr>
<tr>
<td>SEASRKLRRDLASFRE</td>
<td>DR2</td>
<td>5+/6</td>
</tr>
<tr>
<td>ASRKLRRDLASFRE</td>
<td>DR2</td>
<td>4+/6</td>
</tr>
</tbody>
</table>

Guerino, T; Guilherme L, Vaccine, 2011,
StreptInCor did not Induce Heart-tissue Proteins Crossreactive Antibodies

1 (+) mouse anti-myosin sera
2 (-) non-immunized sera
3 DR2 tg mice sera
4 DR4 tg mice sera
5 DQ6 tg mice sera
6 DQ8 tg mice sera

Human myocardium tissue, Cadaveric donor

Guerino, T; Guilherme L, Vaccine, 2011
StreptInCor vaccine did not induce autoimmune reactions

1 year post-vaccination

Guerino, T; Guilherme L, Vaccine, 2011
Autoimmunity Control

RHD - Heart tissue infiltrating cells

<table>
<thead>
<tr>
<th></th>
<th>StreptInCor (Several peptides)</th>
<th>T cell lines T = 29 *</th>
<th>T cell clones N=49 (5 T cell Lines)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Negative</td>
<td>23/29</td>
<td>79.3</td>
<td>42/49</td>
</tr>
<tr>
<td>Positive</td>
<td>6/29</td>
<td>20.7</td>
<td>7/49</td>
</tr>
</tbody>
</table>

* 14 valves and 15 myocardium

Guilherme L, et al, unpublished data

- **IL-10**
 - T-reg cells?

Guilherme L, et al, unpublished data
T regulatory (Treg) Cells

Are defined by several cell markers and are important tools as immunotherapy in organ transplantation and autoimmune diseases.

C-terminal M protein epitope- StreptInCor has a potential to induce:

• Protection against *S. pyogenes* (vaccine)

• T reg cells that regulate autoimmune reactions (therapeutic effect)
StreptInCor: Potential Therapeutic Effect
T regulatory cells: Peripheral blood of RHD patients

Flow Cytometry

Absolute number of cells

CD3⁺ CD4⁺ CD25^{high} CD127⁻ Foxp3⁺

StreptInCor (vaccine candidate epitope) increases the numbers of Natural T Reg cells

Köhler KF, Guilherme L, et al, In Preparation
Summary

• The social-economic impact of RF/RHD in Brazil is still important

 In the last 20 years - our studies lead to:

1. Better understanding of the autoimmune and inflammatory mechanisms leading to the rheumatic heart lesions

2. C-terminal M protein epitope - StreptInCor has a potential to induce:
 • Protection against *S. pyogenes* (vaccine)
 • Cells that regulate autoimmune reactions (therapeutic effect)

Both Properties of StreptInCor Certainly will contribute to a better life of RF/RHD patients and to prevent new infections.
Clinical Phase I Assays / Design of the Study

- **Clinical Phase I**: random, double-blind, controlled with placebo, sequential dosing of StreptInCor (50 µg, 100µg, 200 µg - 2 doses with 28d interval); 6 months boost.

- **Healthy Volunteer**: individual without confirmed disease diagnosis or infection that would compromise the immune response, with ages between 18 and 45 years old.
Next Steps

• GMP production

• Phase I/IIa Clinical Trials – 2015/2016

• ANVISA and FDA registration

Financial Support
CNPq, FAPESP, BNDES
Brazil.
RF/RHD Mechanism of Pathogenesis
Kellen Cristhina Faé, PhD
Rajendranath Ramasawy, PhD
Ana Flavia Vigna, PhD
Luciana Nogueira, PhD
Sandra Emiko Oshiro, MSc
Carlo Martins, PhD student
Nathalia Moreira Santos, MsC Student
Selma A Palácios
Simone Santoso

Vaccine Development
Claudio R Puschel, PhD – Peptide Synthesis
Washington R Silva
Samar F Barros, PhD – Molecular Biology, Microbiology
Raquel Alencar, MSc
Karine Marafogo De Amicis, MsC Student
Karen Kohler, PhD Cellular Immunology
Leticia Chaves, MSc – Humoral Response
Edilberto Postol, PhD – Experimental
Daniella Santoro, PhD
Fabio T Higa
Milton T.G. Silva, MsC Student
Luiz R Mundel
Frederico Moraes Ferreira, PhD – Structural analysis

Advisors – Lab of Immunology
Prof Edecio Cunha-Neto, MD, PhD
Veronica Coelho, MD, PhD

Heart Institute, 1. Pediatric Cardiology, 2. Valvopathy, 3. Surgical and 4. Pathology Divisions
1. Ana C Tanaka, MD
2. Prof Max Grinberg, MD; Prof Flavio Tarasoutchi, MD; Guilherme Spina, MD; Roney Sampaio, MD
3. Prof Pablo Pommerantzeff, MD, Carlos Brandão, MD
4. Lea Demarchi, MD, Prof Vera D Aiello, MD: Paulo S Gutierrez

Pediatric Rheumatology Division, Clinical Hospital
Prof Maria H Kiss, MD, Clovis A Silva, MD

Saint Louis Hospital, Paris, France – TCR, Treg Cells
Prof Dominique Charron, MD, PhD; Prof Antoine Toubert, MD, PhD

Oklahoma University, Oklahoma, USA – Cardiac Myosin Studies
Prof Madeleine W Cunningham, PhD

Finlay Institute, Havana, Cuba – Mucosal Adjuvant
Prof Oliver Perez Martin, MD; Miriam Lastre, MD; Caridad Zayas

Mayo Clinic Rochester, USA, HLA-class II Transgenic Mice
Prof Chella David, MD, PhD
Thank you!