Ischemic stroke detection through image processing techniques

Allan Felipe Fattori Alves
Introduction

• Stroke is considered a non-transmissible chronic disease;

• It is estimated that in 2016 there will be 18 million new cases worldwide;

• In Brazil, stroke causes the death of approximately 100,000 people each year.

National Institute of Aging, Publication no. 07 (2007)
Garritano et al. (2012)
Stroke Classification

- **Ischemic (87%)**: obstruction of vessels that supply blood to the brain;

- **Hemorrhagic (13%)**: disruption of a blood vessel and spread to brain tissues.

 - Even when not cause deaths, stroke can cause damage that compromise life quality;

Roger et al. (2012)
Detection
Primarily diagnosed clinically and confirmed and followed through imaging tests.

- Cerebral Angiography
- CT scan: w/ or w/o contrast
- MRI: w/ or w/o contrast
 - T1 or T2 weighted (T1WI, T2WI)
 - FLAIR
 - Diffusion weighted image (DWI)

Amar (2011)
Introduction

- **MRI advantages:**
 - excellent detection of ischemic tissues;
 - does not use ionizing radiation;
 - more imaging sequences;

- **CT advantages:**
 - more accessible examination;
 - faster than MRI;
 - preferably used for emergency decisions.

Amar (2011)
Stroke Diagnosed with CT

• Distinguish between ischemic and hemorrhagic stroke.
• Ischemic stroke with hemorrhagic transformation >> the wrong choice of treatment can lead to patient death;

Hyperdense area of hemorrhage

Chawla et al. (2009)
Treatment

- *Tissue Plasminogen Activator (rt-PA)* is a protein involved in the breakdown of blood clots and is used to treat embolic or thrombotic stroke.

- There is an effective treatment window of 3 hours.

Stroke Guideline (2013)
ASPECTS - *Alberta Stroke program early CT score*

- Standard ischemic stroke diagnosis with a reproducible scoring system;

- The score divides the middle cerebral artery (MCA) territory into 10 regions of interest.

- A single point is subtracted for an area of early ischemic change, such as focal swelling or parenchymal hypoattenuation, for each of the defined regions.

 Pexman et al. (2001)
This analysis is thus a subjective estimative of the affected area by ischemic stroke.

Pexman et al. (2001)
Objectives

• Quantify and enhance brain areas of interest (normal brain, ischemic stroke) through automatized computational algorithms;

• Comparison the detection of ischemic stroke between the computational algorithm and neuroradiologists.
Methods

• Construction of a database with retrospective examination of patients diagnosed with stroke;

• **Inclusion criteria**
 • patient diagnosed with stroke by specialist (neuroradiologist);
 • CT scans acquired with at least 16 slices scanner;

• **Exclusion criteria**
 • history of intracranial hemorrhage;
 • Malformations, tumors and aneurysms.
Methods

Computational algorithm was developed in Matlab software

1. Initial Image
2. Image segmentation
3. Multiscale enhancement (wavelets)
4. Fuzzy C-means clustering
5. Final Image
6. Area Quantification
7. Active Contour
Methods

Stage 1

• Subjective analyzes were performed by neuroradiologists to quantified ischemic areas in the middle cerebral artery region.

• They performed an manual segmentation process within the ischemic stroke region.
Stage 2

Application of the computational algorithm on the same CT scan slices.

Comparison of both results.
Examples of images evaluated
Methods

Examples of images evaluated
Results

• Multiresolution analysis via Wavelets: enables the segmentation of an image by highlighting morphological characteristics and frequencies.
• Fuzzy c-means clustering (FCM): identified natural groups in a wide range of data.
• 15 patients were analyzed;

• Neuroradiologists found that the morphological filters actually improved the ischemic areas;

• The comparison in area between the neuroradiologist and the computational algorithm showed no deviations greater than 16% in any exams. (underestimate the regions)
Results

Further Analysis

• Sensibility

• Especificity

• Jaccard index

• Dice coefficient
Contributions of this work

• Applying a set of image processing tools for CT scans;

• The algorithm could assist the performance of neuroradiologist for assessment of stroke;

• Development of a computer aided diagnosis software.
Contributions of this work

In clinical practice:

Aid for the inexperienced or non-specialist radiologists;
Greater efficiency in the diagnosis;
Early diagnosis (within 3 hours of treatment window);
References

Thank You!